Skip to main content
  • Book
  • © 2018

Topology Optimization Theory for Laminar Flow

Applications in Inverse Design of Microfluidics

  • Provides numerical implementation details to help readers learn and master topology optimization skills
  • Offers several numerical examples in the area of microfluidics
  • Discusses the topology optimization theory for laminar flows mathematically and coherently
  • Presents several microfluidic element layouts
  • Includes supplementary material: sn.pub/extras

Buy it now

Buying options

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (6 chapters)

  1. Front Matter

    Pages i-xi
  2. Introduction

    • Yongbo Deng, Yihui Wu, Zhenyu Liu
    Pages 1-16
  3. Topology Optimization for Unsteady Flows

    • Yongbo Deng, Yihui Wu, Zhenyu Liu
    Pages 17-66
  4. Topology Optimization for Fluid Flows with Body Forces

    • Yongbo Deng, Yihui Wu, Zhenyu Liu
    Pages 67-121
  5. Topology Optimization for Two-Phase Flows

    • Yongbo Deng, Yihui Wu, Zhenyu Liu
    Pages 123-145
  6. Combination of Topology Optimization and Optimal Control Method

    • Yongbo Deng, Yihui Wu, Zhenyu Liu
    Pages 147-185
  7. Inverse Design of Microfluidics Using Topology Optimization

    • Yongbo Deng, Yihui Wu, Zhenyu Liu
    Pages 187-250

About this book

This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary.

Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.


Authors and Affiliations

  • Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China

    Yongbo Deng, Yihui Wu, Zhenyu Liu

About the authors

Yongbo Deng received the Ph.D. degree in mechanical engineering from University of Chinese Academy of Sciences, in June of 2012. From July of 2012, he began his Assistant Professor position, in State Key Laboratory of Applied Optics (SKLAO), Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences. In September of 2014, he derived his Associate Professor position in the same laboratory. During this period, he ever worked in IMTEK, University of Freiburg, for his research collaboration on electromagnetic metamaterial. In May of 2016, he derived the Guest Professor Fellowship from Karlsruhe Institute of Technology (KIT) for his outstanding research on topology optimization-based inverse design methodology. His research interests are topology optimization-based inverse design method with applications in the areas of microfluidics and photonics, and the fabrication processes of MEMS devices.

Area of work:

Simulation and optimiza

tion in hydrodynamics and mechanics

Partial differential equation constrained optimization problem and inverse problem, especially topology optimization, shape optimization and optimal control methods, design and manufacture of MEMS devices, especially the microstructure, microfluidics and photonic devices

Finite element method (Galerkin finite element, mixed finite element, multiscale finite element, vector finite element)

 

Yihui Wu received her PhD degree from Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences (CAS) in 1996. She has been a professor of CIOMP since 1999 and now she is a distinguished professor of CAS. She is the group leader of Micro/Nano research in CIOMP. Her research interests are high speed flywheel, spectrometer, Lab-on-a-chip and label-free photonic/phononic biosensors and super resolution imaging.

 

Zhenyu Liu  received the Ph.D. degree in mechanical engineering from Dalian University of Technology, Dalian, China, in 2000, and Habilitation and Privatdozent from Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany in 2009. From 2000 to 2009, he was a research assistant and a group leader in the Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany. Since 2009, he has served for Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China. His research interests are the simulation and optimization of devices in MEMS.

 

Bibliographic Information

Buy it now

Buying options

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access