Skip to main content
Birkhäuser

An Introduction to Hamiltonian Mechanics

  • Textbook
  • © 2018

Overview

  • Presents a precise definition and examples of the symmetries of a Hamiltonian, including transformations that depend explicitly on the time
  • Contains the definition and examples of R-separable solutions of the Hamilton-–Jacobi equation
  • Illustrates a complete and simplified proof for the Liouville Theorem and examples of its application
  • Includes a complete list of detailed solutions for self-study students

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher (BAT)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 19.99 USD 39.99
50% discount Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 29.99 USD 54.99
45% discount Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 39.99 USD 79.99
50% discount Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This textbook examines the Hamiltonian formulation in classical mechanics with the basic mathematical tools of multivariate calculus. It explores topics like variational symmetries, canonoid transformations, and geometrical optics that are usually omitted from an introductory classical mechanics course. For students with only a basic knowledge of mathematics and physics, this book makes those results accessible through worked-out examples and well-chosen exercises.


For readers not familiar with Lagrange equations, the first chapters are devoted to the Lagrangian formalism and its applications. Later sections discuss canonical transformations, the Hamilton–Jacobi equation, and the Liouville Theorem on solutions of the Hamilton–Jacobi equation. 


Graduate and advanced undergraduate students in physics or mathematics who are interested in mechanics and applied math will benefit from this treatment of analytical mechanics. The textassumes the basics of classical mechanics, as well as linear algebra, differential calculus, elementary differential equations and analytic geometry. Designed for self-study, this book includes detailed examples and exercises with complete solutions, although it can also serve as a class text.

Reviews

“This book is primarily intended for advanced undergraduate and graduate students in physics and applied mathematics. … in my opinion this book may be regarded as a valuable addition to the existing literature in the field.” (Frans Cantrijn, Mathematical Reviews, July, 2019)

“‘This book is intended for advanced undergraduate or graduate students in physics or applied mathematics and for researchers working in related subjects.’” (Cristian Lăzureanu, zbMATH 1422.70001, 2019)

“A book for beginning students of analytical mechanics, whether they be advanced undergraduates, graduate students or others wishing to learn more about mechanics through self-study. The book does a very nice job of shepherding the reader from Newtonian mechanics to Lagrangian mechanics … . This book is a must-have library book for any mathematics or physics library.” (Steven Deckelman,MAA Reviews, May 20, 2019)

Authors and Affiliations

  • Instituto de Ciencias, BUAP, Puebla, Mexico

    Gerardo F. Torres del Castillo

About the author

Gerardo F. Torres del Castillo is a professor of physics and mathematics at the Universidad Autónoma de Puebla, where he has taught since 1979. He is the author or coauthor of more than 30 papers on classical mechanics. His other published books are Differentiable Manifolds; 3-D Spinors, Spin-Weighted Functions and their Applications; and Spinors in Four-Dimensional Spaces.

Bibliographic Information

Publish with us