Skip to main content
  • Book
  • © 2018

Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides

Authors:

  • Nominated as an outstanding Ph.D. thesis by Massachusetts Institute of Technology, USA
  • Presents results that are vital for the emerging field of valleytronics
  • Offers insights into the novel optical and electronic properties or monolayer transition-metal dichalcogenides
  • Describes innovative spectroscopic techniques for semiconductor physics
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (8 chapters)

  1. Front Matter

    Pages i-xvii
  2. Introduction

    • Edbert Jarvis Sie
    Pages 1-11
  3. Time-Resolved Absorption Spectroscopy

    • Edbert Jarvis Sie
    Pages 13-25
  4. Intervalley Biexcitons in Monolayer MoS2

    • Edbert Jarvis Sie
    Pages 27-36
  5. XUV-Based Time-Resolved ARPES

    • Edbert Jarvis Sie
    Pages 115-129

About this book

This thesis presents optical methods to split the energy levels of electronic valleys in transition-metal dichalcogenides (TMDs) by means of coherent light-matter interactions. The electronic valleys found in monolayer TMDs such as MoS2, WS2, and WSe2 are among the many novel properties exhibited by semiconductors when thinned down to a few atomic layers, and have have been proposed as a new way to carry information in next generation devices (so-called valleytronics). These valleys are, however, normally locked in the same energy level, which limits their potential use for applications. The author describes experiments performed with a pump-probe technique using transient absorption spectroscopy on MoS2 and WS2. It is demonstrated that hybridizing the electronic valleys with light allows one to optically tune their energy levels in a controllable valley-selective manner. In particular, by using off-resonance circularly polarized light at small detuning, one can tune the energy level of one valley through the optical Stark effect. Also presented within are observations, at larger detuning, of a separate contribution from the so-called Bloch--Siegert effect, a delicate phenomenon that has eluded direct observation in solids. The two effects obey opposite selection rules, enabling one to separate the two effects at two different valleys.

Authors and Affiliations

  • Stanford University, Stanford, USA

    Edbert Jarvis Sie

About the author

Edbert Jarvis Sie was awarded a PhD in physics by Massachusetts Institute of Technology in 2017. He is now a postdoctoral research fellow at Stanford University.

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access