Profitieren Sie jetzt: 50% Rabatt auf Bücher in BWL, VWL & Recht!

Advanced Courses in Mathematics - CRM Barcelona

From Lévy-Type Processes to Parabolic SPDEs

Autoren: Khoshnevisan, Davar, Schilling, René

Herausgeber: Utzet, Frederic, Quer-Sardanyons, Lluis (Eds.)

  • Studies invariance and comparison principles for parabolic SPDEs in a very general framework beyond the classical setting
  • Presents an extensive introduction to Lévy processes, including the different constructions
  • Provides properties of Feller processes as space inhomogeneous processes that behave locally like Lévy processes 
Weitere Vorteile

Dieses Buch kaufen

eBook 23,79 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-319-34120-0
  • Versehen mit digitalem Wasserzeichen, DRM-frei
  • Erhältliche Formate: PDF
  • eBooks sind auf allen Endgeräten nutzbar
  • Sofortiger eBook Download nach Kauf
Softcover 32,09 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-319-34119-4
  • Kostenfreier Versand für Individualkunden weltweit
  • Gewöhnlich versandfertig in 3-5 Werktagen.
Über dieses Lehrbuch

This volume presents the lecture notes from two courses given by Davar Khoshnevisan and René Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis.

René Schilling’s notes are an expanded version of his course on Lévy and Lévy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Lévy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Lévy-Itô decomposition. On the other, it identifies the infinitesimal generator of the Lévy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Lévy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc.

In turn, Davar Khoshnevisan’s course investigates selected problems in the field of stochastic partial differential equations of parabolic type. More precisely, the main objective is to establish an Invariance Principle for those equations in a rather general setting, and to deduce, as an application, comparison-type results. The framework in which these problems are addressed goes beyond the classical setting, in the sense that the driving noise is assumed to be a multiplicative space-time white noise on a group, and the underlying elliptic operator corresponds to a generator of a Lévy process on that group. This implies that stochastic integration with respect to the above noise, as well as the existence and uniqueness of a solution for the corresponding equation, become relevant in their own right. These aspects are also developed and supplemented by a wealth of illustrative examples.

Über den Autor

Davar Khoshnevisan is Professor of Mathematics at The University of Utah.

René L. Schilling is Professor of Probability at Technische Universität Dresden.

Inhaltsverzeichnis (19 Kapitel)

Dieses Buch kaufen

eBook 23,79 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-319-34120-0
  • Versehen mit digitalem Wasserzeichen, DRM-frei
  • Erhältliche Formate: PDF
  • eBooks sind auf allen Endgeräten nutzbar
  • Sofortiger eBook Download nach Kauf
Softcover 32,09 €
Preis für Deutschland (Brutto)
  • ISBN 978-3-319-34119-4
  • Kostenfreier Versand für Individualkunden weltweit
  • Gewöhnlich versandfertig in 3-5 Werktagen.
Loading...

Wir empfehlen

Loading...

Bibliografische Information

Bibliographic Information
Buchtitel
From Lévy-Type Processes to Parabolic SPDEs
Autoren
Herausgeber
  • Frederic Utzet
  • Lluis Quer-Sardanyons
Titel der Buchreihe
Advanced Courses in Mathematics - CRM Barcelona
Copyright
2016
Verlag
Birkhäuser Basel
Copyright Inhaber
Springer International Publishing Switzerland
eBook ISBN
978-3-319-34120-0
DOI
10.1007/978-3-319-34120-0
Softcover ISBN
978-3-319-34119-4
Buchreihen ISSN
2297-0304
Auflage
1
Seitenzahl
VIII, 219
Themen