Logo - springer
Slogan - springer

Computer Science - Theoretical Computer Science | Experimental Methods for the Analysis of Optimization Algorithms (Reviews)

Experimental Methods for the Analysis of Optimization Algorithms

Bartz-Beielstein, Th., Chiarandini, M., Paquete, L., Preuss, M. (Eds.)

2010, XXII, 457 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$119.00

(net) price for USA

ISBN 978-3-642-02538-9

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$159.00

(net) price for USA

ISBN 978-3-642-02537-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$159.00

(net) price for USA

ISBN 978-3-642-44590-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

"This book belongs on the shelf of anyone interested in carrying out experimental research on algorithms and heuristics for optimization problems. ... Don’t keep this book on the shelf: read it, and apply the techniques and tools contained herein to your own algorithmic research project. Your experiments will become more efficient and more trustworthy, and your experimental data will lead to clearer and deeper insights about performance." (Catherine C. McGeoch, Amherst College)

"Here you will find aspects that are treated scientifically by the experts in this exciting domain offering their up-to-date know-how and even leading into philosophical domains." (Hans-Paul Schwefel, Technische Universität Dortmund)

"[This] book ... is a solid and comprehensive step forward in the right direction. [It] not only covers adequate comparison of methodologies but also the tools aimed at helping in algorithm design and understanding, something that is being recently referred to as 'Algorithm Engineering'. [It] is of interest to two distinct audiences. First and foremost, it is targeted at the whole operations research and management science, artificial intelligence and computer science communities with a loud and clear cry for attention. Strong, sound and reliable tools should be employed for the comparison and assessment of algorithms and also for more structured algorithm engineering. Given the level of detail of some other chapters however, a second potential audience could be made up of those researchers interested in the core topic of algorithm assessment. The long list of contributors to this book includes top notch and experienced researchers that, together, set the trend in the field. As a result, those interested in this specific area of analysis of optimization algorithms should not miss this book under any circumstance. ... The careful, sound, detailed and comprehensive assessment of optimization algorithms is a necessity that requires attention and care. As a result, my opinion is that this book should be followed and that it should be at the top of every experimenter’s table." (Rubén Ruiz, European Journal of Operational Research, 2011, 214(2):453-456)

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Probability and Statistics in Computer Science.