Logo - springer
Slogan - springer

Computer Science - Theoretical Computer Science | Computational Partial Differential Equations - Numerical Methods and Diffpack Programming

Computational Partial Differential Equations

Numerical Methods and Diffpack Programming

Langtangen, Hans Petter

Originally published as Volume 2 in the series: Lecture Notes in Computational Science and Engineering

2nd ed. 2003, XXVI, 862 p. In 2 volumes, not available separately.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$59.99

(net) price for USA

ISBN 978-3-642-55769-9

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$86.95

(net) price for USA

ISBN 978-3-540-43416-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$86.95

(net) price for USA

ISBN 978-3-642-62811-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

The second edition features lots of improvements and new material. The most significant additions include - finite difference methods and implementations for a 1D time-dependent heat equation (Chapter 1. 7. 6), - a solver for vibration of elastic structures (Chapter 5. 1. 6), - a step-by-step instruction of how to develop and test Diffpack programs for a physical application (Chapters 3. 6 and 3. 13), - construction of non-trivial grids using super elements (Chapters 3. 5. 4, 3. 6. 4, and 3. 13. 4), - additional material on local mesh refinements (Chapter 3. 7), - coupling of Diffpack with other types of software (Appendix B. 3) - high-level programming offinite difference solvers utilizing the new stencil (finite difference operator) concept in Diffpack (Appendix D. 8). Many of the examples, projects, and exercises from the first edition have been revised and improved. Some new exercises and projects have also been added. A hopefully very useful new feature is the compact overview of all the program examples in the book and the associated software files, presented in Chapter 1. 2. Errors have been corrected, many explanations have been extended, and the text has been upgraded to be compatible with Diffpack version 4. 0. The major difficulty when developing programs for numerical solution of partial differential equations is to debug and verify the implementation. This requires an interplay between understanding the mathematical model,the in­ volved numerics, and the programming tools.

Content Level » Research

Keywords » C++ - computer - finite element method - fluid mechanics - mechanics - model - numerical methods - numerics - programming

Related subjects » Analysis - Computational Intelligence and Complexity - Computational Science & Engineering - Software Engineering - Theoretical, Mathematical & Computational Physics - Theoretical Computer Science

Table of contents / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Theory of Computation.

Additional information