Skip to main content

Dynamic Programming

A Computational Tool

  • Book
  • © 2007

Overview

  • Reference guide for educational and professional users of the DP software tool
  • Includes supplementary material: sn.pub/extras

Part of the book series: Studies in Computational Intelligence (SCI, volume 38)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

  1. Dynamic Programming

  2. Modeling of DP Problems

  3. Design and Implementation of DP Tool

  4. Computational Results

Keywords

About this book

Dynamic programming has long been applied to numerous areas in mat- matics, science, engineering, business, medicine, information systems, b- mathematics, arti?cial intelligence, among others. Applications of dynamic programming have increased as recent advances have been made in areas such as neural networks, data mining, soft computing, and other areas of com- tational intelligence. The value of dynamic programming formulations and means to obtain their computational solutions has never been greater. This book describes the use of dynamic programming as a computational tool to solve discrete optimization problems. (1) We ?rst formulate large classes of discrete optimization problems in dynamic programming terms, speci?cally by deriving the dynamic progr- ming functional equations (DPFEs) that solve these problems. A text-based language, gDPS, for expressing these DPFEs is introduced. gDPS may be regarded as a high-level speci?cation language, not a conventional procedural computer programming language, but which can be used to obtain numerical solutions. (2)Wethende?neandexaminepropertiesofBellmannets,aclassofPetri nets that serves both as a formal theoretical model of dynamic programming problems, and as an internal computer data structure representation of the DPFEs that solve these problems. (3)Wealsodescribethedesign,implementation,anduseofasoftwaretool, calledDP2PN2Solver, for solving DPFEs. DP2PN2Solver may be regarded as a program generator, whose input is a DPFE, expressed in the input spec- cation language gDPS and internally represented as a Bellman net, and whose output is its numerical solution that is produced indirectly by the generation of “solver” code, which when executed yields the desired solution.

Authors and Affiliations

  • Department of Information and Computer Sciences, University of Hawaii at Manoa, HI 96822, Honolulu, USA

    Lew Art

  • Department of Computer Science Natural Sciences Collegium, Eckerd College, FL 33711, Saint Petersburg, USA

    Holger Mauch

Bibliographic Information

Publish with us