Logo - springer
Slogan - springer

Computer Science - Theoretical Computer Science | Nano, Quantum and Molecular Computing - Implications to High Level Design and Validation

Nano, Quantum and Molecular Computing

Implications to High Level Design and Validation

Shukla, Sandeep Kumar, Bahar, R. Iris (Eds.)

2004, XVII, 358 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$159.00

(net) price for USA

ISBN 978-1-4020-8068-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-1-4020-8067-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-1-4419-5466-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

One of the grand challenges in the nano-scopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing 'zero-one' based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the shear scale.
The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such miniscule devices, are difficult to articulate and answer. We have found a lack of resources in the confines of a single volume that at least partially attempts to answer these questions.
We believe that this volume contains a large amount of research material as well as new ideas that will be very useful for some one starting research in the arena of nanocomputing, not at the device level, but the problems one would face at system level design and validation when nanoscopic physicality will be present at the device level.

Content Level » Research

Keywords » Hardware - architecture - computer - logic - material - nano-scale - quantum computing - transistor

Related subjects » Circuits & Systems - Electronics & Electrical Engineering - Information Systems and Applications - Theoretical Computer Science

Table of contents 

Dedication. Preface. Foreword. Acknowledgements. I: Nano-Computing at the Physical Layer. Preface. 1. Nanometer Scale Technologies: Device Considerations; A. Raychowdhury, K. Roy. II: Defect Tolerant Nano-Computing. Preface. 2. Nanocomputing in the Presence of Defects and Faults: A Survey; P. Graham, M. Gokhale. 3. Defect Tolerance at the End of the Roadmap; M. Mishra, S.C. Goldstein. 4. Obtaining Quadrillion-Transistor Logic Systems Despite Imperfect Manufacture, Hardware Failure and Incomplete System Specification; L.J.K. Durbeck, N.J. Macias. 5. A Probabilistic-based Design for Nanoscale Computation; R.I. Bahar, Jie Chen, J. Mundy. 6. Evaluating Reliability Trade-offs for Nano-Architectures; D. Bhaduri, S.K. Shukla. 7. Law of Large Numbers System Design; A. DeHon. III: Nano-Scale Quantum Computing. Preface. 8. Challenges in Reliable Quantum Computing; D. Franklin, F.T. Chong. 9. Origins and Motivations for Design Rules in QCA; M.T. Niemier, P.M. Kogge. 10. Partitioning and Placement for Buildable QCA Circuits; Sung Kyu Lim, M. Niemier. IV: Validation of Nano-Scale Architectures. Preface. 11. Verification of Large-Scale Nano Systems with Unreliable Nano Devices; M.S. Hsiao, Shuo Sheng, R. Arora, A. Jain, V. Boppana. Biographies.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Theory of Computation.