Logo - springer
Slogan - springer

Computer Science - Theoretical Computer Science | Analysis and Synthesis of Distributed Real-Time Embedded Systems

Analysis and Synthesis of Distributed Real-Time Embedded Systems

Pop, Paul, Eles, Petru, Peng, Zebo

2004, XXI, 326 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$189.00

(net) price for USA

ISBN 978-1-4020-2873-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$99.00

(net) price for USA

ISBN 978-1-4020-2872-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$239.00

(net) price for USA

ISBN 978-1-4419-5257-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • About this book

Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computers. An important class of embedded computer systems is that of hard real-time systems, which have to fulfill strict timing requirements. As real-time systems become more complex, they are often implemented using distributed heterogeneous architectures.

Analysis and Synthesis of Distributed Real-Time Embedded Systems addresses the design of real-time applications implemented using distributed heterogeneous architectures. The systems are heterogeneous not only in terms of hardware components, but also in terms of communication protocols and scheduling policies. Regarding this last aspect, time-driven and event-driven systems, as well as a combination of the two, are considered. Such systems are used in many application areas like automotive electronics, real-time multimedia, avionics, medical equipment, and factory systems. The proposed analysis and synthesis techniques derive optimized implementations that fulfill the imposed design constraints. An important part of the implementation process is the synthesis of the communication infrastructure, which has a significant impact on the overall system performance and cost.

Analysis and Synthesis of Distributed Real-Time Embedded Systems considers the mapping and scheduling tasks within an incremental design process. To reduce the time-to-market of products, the design of real-time systems seldom starts from scratch. Typically, designers start from an already existing system, running certain applications, and the design problem is to implement new functionality on top of this system. Supporting such an incremental design process provides a high degree of flexibility, and can result in important reductions of design costs.

Analysis and Synthesis of Distributed Real-Time Embedded Systems will be of interest to advanced undergraduates, graduate students, researchers and designers involved in the field of embedded systems.

Content Level » Professional/practitioner

Keywords » Analysis - Hardware - computer - distributed systems - embedded systems - modeling - multimedia - optimization

Related subjects » Electronics & Electrical Engineering - Mechanical Engineering - Signals & Communication - Theoretical Computer Science

Table of contents 

List of Figures. List of Tables. Preface. I. Preliminaries. 1. Introduction. 1.1. A Typical Application Area:Automotive Electronics. 1.2. Distributed Hard Real-Time Embedded Systems. 1.3. Book Overview. 2. System-Level Design and Modeling. 2.1. System-Level Design. 2.2. Incremental Design Process. 2.3. Application Modeling. 3. Distributed Hard Real-Time Systems. 3.1. Time-Triggered vs. Event-Triggered. 3.2. The Hardware Platform. 3.3. Time-Driven Systems. 3.4. Event-Driven Systems. 3.5. Multi-Cluster Systems. II. Time-Driven Systems. 4. Scheduling and Bus Access Optimization for Time-Driven Systems. 4.1. Background. 4.2. Scheduling with Control and Data Dependencies. 4.3. Scheduling for Time-Driven Systems. 4.4. Bus Access Optimization. 4.5. Experimental Evaluation. 5. Incremental Mapping for Time-Driven Systems. 5.1. Background. 5.2. Incremental Mapping and Scheduling. 5.3. Quality Metrics and Objective Function. 5.4. Mapping and Scheduling Strategy. 5.5. Experimental Evaluation. III. Event-Driven Systems. 6. Schedulability Analysis and Bus Access Optimization for Event-Driven Systems. 6.1. Background. 6.2. Response Time Analysis. 6.3. Schedulability Analysis under Control and Data Dependencies. 6.4. Schedulability Analysis for Distributed Systems. 6.5. Schedulability Analysis for the Time Triggered Protocol. 6.6. Schedulability Analysis for Event-Driven Systems. 6.7. Bus Access Optimization. 6.8. Experimental Evaluation. 7. Incremental Mapping for Event-Driven Systems. 7.1. Application Mapping and Scheduling. 7.2. Mapping and Scheduling in an Incremental Design Approach. 7.3. Quality Metrics and Exact Problem Formulation. 7.4. Mapping and Scheduling Strategy. 7.5. Experimental Evaluation. IV. Multi-Cluster Systems. 8. Schedulability Analysis and Bus Access Optimization for Multi-Cluster Systems. 8.1. Problem Formulation. 8.2. Multi-Cluster Scheduling. 8.3. Scheduling and Optimization Strategy. 8.4. Experimental Evaluation. 9. Partitioning and Mapping for Multi-Cluster Systems. 9.1. Partitioning and Mapping. 9.2. Partitioning and Mapping Strategy. 9.3. Experimental Evaluation. 10. Schedulability-Driven Frame Packing for Multi-Cluster Systems. 10.1. Problem Formulation. 10.2. Frame Packing Strategy. 10.3. Experimental Evaluation. Appendix A. List of Notations. List of Abbreviations. Index. Bibliography.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Theory of Computation.