Logo - springer
Slogan - springer

Computer Science - Theoretical Computer Science | Algorithmic Methods in Non-Commutative Algebra - Applications to Quantum Groups

Algorithmic Methods in Non-Commutative Algebra

Applications to Quantum Groups

Bueso, J.L., Gómez-Torrecillas, José, Verschoren, A.

2003, XI, 300 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$109.00

(net) price for USA

ISBN 978-94-017-0285-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$139.00

(net) price for USA

ISBN 978-1-4020-1402-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$139.00

(net) price for USA

ISBN 978-90-481-6328-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • About this book

The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.

Content Level » Research

Keywords » Algebraic structure - Gröbner basis - algorithms - complexity - ring theory

Related subjects » Algebra - Computational Science & Engineering - Theoretical Computer Science

Table of contents 

Introduction. 1: Generalities on rings. 1. Rings and ideals. 2. Modules and chain conditions. 3. Ore extensions. 4. Factorization. 5. Other examples. 6. Quantum groups. 2: Gröbner basis computation algorithms. 1. Admissible orders. 2. Left Poincaré-Birkhoff-Witt Rings. 3. Examples. 4. The Division Algorithm. 5. Gröbner bases for left ideals. 6. Buchberger's Algorithm. 7. Reduced Gröbner Bases. 8. Poincaré-Birkhoff-Witt rings. 9. Effective computations for two-sided ideals. 3: Poincaré-Birkhoff-Witt Algebras. 1. Bounding quantum relations. 2. Misordering. 3. The Diamond Lemma. 4. Poincaré-Birkhoff-Witt Theorems. 5. Examples. 6. Iterated Ore Extensions. 4: First applications. 1. Applications to left ideals. 2. Cyclic finite-dimensional modules. 3. Elimination. 4. Graded and filtered algebras. 5. The omega-filtration of a PBW algebra. 6. Homogeneous Gröbner bases. 7. Homogenization. 5: Gröbner bases for modules. 1. Gröbner bases and syzygies. 2. Computation of the syzygy module. 3. Admissible orders in stable subsets. 4. Gröbner bases for modules. 5. Gröbner bases for subbimodules. 6. Elementary applications of Gröbner bases for modules. 7. Graded and filtered modules. 8. The omega-filtration of a module. 9. Homogeneous Gröbner bases. 10. Homogenization. 6:Syzygies and applications. 1. Syzygies for modules. 2. Intersections. 3. Applications to finitely presented modules. 4. Schreyer's order. 5. Free resolutions. 6. Computation of Hom and Ext. 7: The Gelfand-Kirillov dimension and the Hilbert polynomial. 1. The Gelfand-Kirillov dimension. 2. The Hilbert function of a stable subset. 3.The Hilbert function of a module over a PBW algebra. 4. The Gelfand-Kirillov dimension of PBW algebras. 8: Primality. 1. Localization. 2. The Ore condition and syzygies. 3. A primality test. 4. The primality test in iterated differential operator rings. 5. The primality test in coordinate rings of quantum spaces. Index. References.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Numeric Computing.