Logo - springer
Slogan - springer

Computer Science - Theoretical Computer Science | Guide to Geometric Algebra in Practice

Guide to Geometric Algebra in Practice

Dorst, Leo, Lasenby, Joan (Eds.)

2011, XVII, 458 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$99.00

(net) price for USA

ISBN 978-0-85729-811-9

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-0-85729-810-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-1-4471-5897-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them
  • Provides hands-on review exercises throughout the book, together with helpful chapter summaries
  • Includes contributions from an international community of experts, spanning a broad range of disciplines

Geometric algebra (GA), also known as Clifford algebra, is a powerful unifying framework for geometric computations that extends the classical techniques of linear algebra and vector calculus in a structural manner. Its benefits include cleaner computer-program solutions for known geometric computation tasks, and the ability to address increasingly more involved applications.

This highly practical Guide to Geometric Algebra in Practice reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software tools. Contributions are included from an international community of experts spanning a broad range of disciplines.

Topics and features:

  • Provides hands-on review exercises throughout the book, together with helpful chapter summaries
  • Presents a concise introductory tutorial to conformal geometric algebra (CGA)
  • Examines the application of CGA for the description of rigid body motion, interpolation and tracking, and image processing
  • Reviews the employment of GA in theorem proving and combinatorics
  • Discusses the geometric algebra of lines, lower-dimensional algebras, and other alternatives to 5-dimensional CGA
  • Proposes applications of coordinate-free methods of GA for differential geometry

This comprehensive guide/reference is essential reading for researchers and professionals from a broad range of disciplines, including computer graphics and game design, robotics, computer vision, and signal processing. In addition, its instructional content and approach makes it suitable for course use and students who need to learn the value of GA techniques.

Dr. Leo Dorst is Universitair Docent (tenured assistant professor) in the Faculty of Sciences, University of Amsterdam, The Netherlands. Dr. Joan Lasenby is University Senior Lecturer in the Engineering Department of Cambridge University, U.K.

Content Level » Professional/practitioner

Keywords » Clifford Algebra - Conformal Model - Geometric Algebra - Linear Algebra - Quaternions - Vector Mathematics

Related subjects » Artificial Intelligence - Image Processing - Information Systems and Applications - Theoretical Computer Science

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Mathematical Applications in Computer Science.

Additional information