Logo - springer
Slogan - springer

Computer Science - Software Engineering | Practitioner's Knowledge Representation - A Pathway to Improve Software Effort Estimation

Practitioner's Knowledge Representation

A Pathway to Improve Software Effort Estimation

Mendes, Emilia

2014, XI, 211 p. 84 illus.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$59.99

(net) price for USA

ISBN 978-3-642-54157-5

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$79.99

(net) price for USA

ISBN 978-3-642-54156-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Presents an industry-proven methodology for (software) effort estimation
  • Illustrated by several case studies employing a widely-used tool
  • Author with long-term experience in industry and academia

The main goal of this book is to help organizations improve their effort estimates and effort estimation processes by providing a step-by-step methodology that takes them through the creation and validation of models that are based on their own knowledge and experience. Such models, once validated, can then be used to obtain predictions, carry out risk analyses, enhance their estimation processes for new projects, and generally advance them as learning organizations.

Emilia Mendes presents the Expert-Based Knowledge Engineering of Bayesian Networks (EKEBNs) methodology, which she has used and adapted during the course of several industry collaborations with different companies world-wide over more than 6 years. The book itself consists of two major parts: first, the methodology’s foundations in knowledge management, effort estimation (with special emphasis on the intricacies of software and Web development), and Bayesian networks are detailed; then six industry case studies are presented which illustrate the practical use of EKEBNs.  Domain experts from each company participated in the elicitation of the bespoke models for effort estimation, and all models were built employing the widely-used Netica ™ tool. This part is rounded off with a chapter summarizing the experiences with the methodology and the derived models.

Practitioners working on software project management, software process quality, or effort estimation and risk analysis in general will find a thorough introduction into an industry-proven methodology as well as numerous experiences, tips and possible pitfalls invaluable for their daily work.

Content Level » Professional/practitioner

Keywords » Bayesian Networks - knowledge reasoning - knowledge representation - software effort estimation - software engineering - software project management

Related subjects » Artificial Intelligence - Software Engineering - Theoretical Computer Science

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Software Engineering.