Logo - springer
Slogan - springer

Computer Science - Security and Cryptology | Privacy, Security, and Trust in KDD - First ACM SIGKDD International Workshop, PinKDD 2007, San

Privacy, Security, and Trust in KDD

First ACM SIGKDD International Workshop, PinKDD 2007, San Jose, CA, USA, August 12, 2007, Revised, Selected Papers

Bonchi, F., Ferrari, E., Malin, B., Saygin, Y. (Eds.)

2008

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.99

(net) price for USA

ISBN 978-3-540-78478-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$89.99

(net) price for USA

ISBN 978-3-540-78477-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Vast amounts of data are collected by service providers and system administ- tors, and are available in public information systems. Data mining technologies provide an ideal framework to assist in analyzing such collections for computer security and surveillance-related endeavors. For instance, system administrators can apply data mining to summarize activity patterns in access logs so that potential malicious incidents can be further investigated. Beyond computer - curity, data mining technology supports intelligence gathering and summari- tion for homeland security. For years, and most recently fueled by events such as September 11, 2001, government agencies have focused on developing and applying data mining technologies to monitor terrorist behaviors in public and private data collections. Theapplicationof data mining to person-speci?cdata raisesseriousconcerns regarding data con?dentiality and citizens’ privacy rights. These concerns have led to the adoption of various legislation and policy controls. In 2005, the - ropean Union passed a data-retention directive that requires all telephone and Internetservice providersto store data ontheir consumers for up to two yearsto assist in the prevention of terrorismand organized crime. Similar data-retention regulationproposalsareunderheateddebateintheUnitedStatesCongress. Yet, the debate often focuses on ethical or policy aspects of the problem, such that resolutions have polarized consequences; e. g. , an organization can either share data for data mining purposes or it can not. Fortunately, computer scientists, and data mining researchers in particular, have recognized that technology can beconstructedtosupportlesspolarizedsolutions. Computerscientistsaredev- oping technologies that enable data mining goals without sacri?cing the privacy and security of the individuals to whom the data correspond.

Content Level » Research

Keywords » DOM - Ubiquitous Computing - access control - anonymity - anonymization - biometrics - data mining - graph data - intrusion detection - link mining - modeling - national securit - privacy - security - trust

Related subjects » Communication Networks - Database Management & Information Retrieval - General Issues - Security and Cryptology

Table of contents 

Invited Paper.- An Ad Omnia Approach to Defining and Achieving Private Data Analysis.- Contributed Papers.- Phoenix: Privacy Preserving Biclustering on Horizontally Partitioned Data.- Allowing Privacy Protection Algorithms to Jump Out of Local Optimums: An Ordered Greed Framework.- Probabilistic Anonymity.- Website Privacy Preservation for Query Log Publishing.- Privacy-Preserving Data Mining through Knowledge Model Sharing.- Privacy-Preserving Sharing of Horizontally-Distributed Private Data for Constructing Accurate Classifiers.- Towards Privacy-Preserving Model Selection.- Preserving the Privacy of Sensitive Relationships in Graph Data.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Systems and Data Security.