Logo - springer
Slogan - springer

Computer Science - Security and Cryptology | Machine Learning in Cyber Trust - Security, Privacy, and Reliability

Machine Learning in Cyber Trust

Security, Privacy, and Reliability

Tsai, Jeffrey J. P., Yu, Philip S. (Eds.)


Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-0-387-88735-7

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-0-387-88734-0

free shipping for individuals worldwide

online orders shipping within 2-3 days.

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4419-4698-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Provides the reader with an overview of machine-learning methods
  • Demonstrates how machine learning is used to deal with the security, reliability, performance, and privacy of cyber-based systems
  • Presents the state of the practice in machine learning and cyber systems and identifies further efforts needed to produce fruitful results

Many networked computer systems are far too vulnerable to cyber attacks that can inhibit their functioning, corrupt important data, or expose private information. Not surprisingly, the field of cyber-based systems turns out to be a fertile ground where many tasks can be formulated as learning problems and approached in terms of machine learning algorithms.

This book contains original materials by leading researchers in the area and covers applications of different machine learning methods in the security, privacy, and reliability issues of cyber space. It enables readers to discover what types of learning methods are at their disposal, summarizing the state of the practice in this important area, and giving a classification of existing work.

Specific features include the following:

  • A survey of various approaches using machine learning/data mining techniques to enhance the traditional security mechanisms of databases
  • A discussion of detection of SQL Injection attacks and anomaly detection for defending against insider threats
  • An approach to detecting anomalies in a graph-based representation of the data collected during the monitoring of cyber and other infrastructures
  • An empirical study of seven online-learning methods on the task of detecting malicious executables
  • A novel network intrusion detection framework for mining and detecting sequential intrusion patterns
  • A solution for extending the capabilities of existing systems while simultaneously maintaining the stability of the current systems
  • An image encryption algorithm based on a chaotic cellular neural network to deal with information security and assurance
  • An overview of data privacy research, examining the achievements, challenges and opportunities while pinpointing individual research efforts on the grand map of data privacy protection
  • An algorithm based on secure multiparty computation primitives to compute the nearest neighbors of records in horizontally distributed data
  • An approach for assessing the reliability of SOA-based systems using AI reasoning techniques
  • The models, properties, and applications of context-aware Web services, including an ontology-based context model to enable formal description and acquisition of contextual information pertaining to service requestors and services

Those working in the field of cyber-based systems, including industrial managers, researchers, engineers, and graduate and senior undergraduate students will find this an indispensable guide in creating systems resistant to and tolerant of cyber attacks.

Content Level » Research

Keywords » Spam - Web security - classification - control - cyber terrorism - intrusion detection - learning - learning algorithms - machine learning - performance - privacy - reliability - security

Related subjects » Artificial Intelligence - Database Management & Information Retrieval - Security and Cryptology

Table of contents 

Cyber System.- Cyber-Physical Systems: A New Frontier.- Security.- Misleading Learners: Co-opting Your Spam Filter.- Survey of Machine Learning Methods for Database Security.- Identifying Threats Using Graph-based Anomaly Detection.- On the Performance of Online Learning Methods for Detecting Malicious Executables.- Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems.- A Non-Intrusive Approach to Enhance Legacy Embedded Control Systems with Cyber Protection Features.- Image Encryption and Chaotic Cellular Neural Network.- Privacy.- From Data Privacy to Location Privacy.- Privacy Preserving Nearest Neighbor Search.- Reliability.- High-Confidence Compositional Reliability Assessment of SOA-Based Systems Using Machine Learning Techniques.- Model, Properties, and Applications of Context-Aware Web Services.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Systems and Data Security.