Logo - springer
Slogan - springer

Computer Science - Information Systems and Applications | Linkage in Evolutionary Computation

Linkage in Evolutionary Computation

Chen, Ying-ping (Ed.)

2008

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$209.00

(net) price for USA

ISBN 978-3-540-85068-7

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$269.00

(net) price for USA

ISBN 978-3-540-85067-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$269.00

(net) price for USA

ISBN 978-3-642-09876-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Presents recent results in Linkage in Evolutionary Computation

In recent years, the issue of linkage in GEAs has garnered greater attention and recognition from researchers. Conventional approaches that rely much on ad hoc tweaking of parameters to control the search by balancing the level of exploitation and exploration are grossly inadequate. As shown in the work reported here, such parameters tweaking based approaches have their limits; they can be easily ”fooled” by cases of triviality or peculiarity of the class of problems that the algorithms are designed to handle. Furthermore, these approaches are usually blind to the interactions between the decision variables, thereby disrupting the partial solutions that are being built up along the way.

The whole volume consisting of 19 chapters is divided into 3 parts: Models and Theories; Operators and Frameworks; Applications. This edited volume will serve as a useful guide and reference for researchers who are currently working in the area of linkage. For postgraduate research students, this volume will serve as a good source of reference. It is also suitable as a text for a graduate level course focusing on linkage issues. For practitioners who are looking at putting into practice the concept of linkage, the few chapters on applications will serve as a useful guide.

Content Level » Research

Keywords » Bayesian network - Evolution - Evolutionary Computation - Linkage - Operator - algorithm - algorithms - calculus - cognition - evolutionary algorithm - genetic algorithms - learning - microelectromechanical system (MEMS) - model - optimization

Related subjects » Artificial Intelligence - Computational Intelligence and Complexity - Information Systems and Applications

Table of contents 

Part I Models & Theories.- Parallel BMDA with Probability Model Migration.- Linkages Detection in Histogram-based Estimation of Distribution Algorithm.- Linkage in Island Models.- Real-coded ECGA for Solving Decomposable Real-Valued Optimization Problems.- Linkage Learning Accuracy in the Bayesian Optimization Algorithm.- The Impact of Exact Probabilistic Learning Algorithms in EDAs based on Bayesian Networks.- Linkage Learning in Estimation of Distribution Algorithms.- Part II Operators & Frameworks.- Parallel GEAs with Linkage Analysis over Grid.- Identification and Exploitation of Linkage by Means of Alternative Splicing.- A Clustering-based Approach for Linkage Learning Applied to Multimodal Optimization.- Studying the Effects of Dual Coding on the Adaptation of Representation for Linkage in Evolutionary Algorithms.- Symbiotic Evolution to avoid Linkage Problem.- EpiSwarm, A Swarm-based System for Investigating Genetic Epistasis.- Real-Coded Extended Compact Genetic Algorithm based on Mixtures of Models.- Part III Applications.- Genetic Algorithms for the Airport Gate Assignment: Linkage, Representation and Uniform Crossover.- A Decomposed Approach for the Minimum Interference Frequency Assignment.- Set Representation and Multi-parent Learning within an Evolutionary Algorithm for Optimal Design of Trusses.- A Network Design Problem by a GA with Linkage Identification and Recombination for Overlapping Building Blocks.- Knowledge-based Evolutionary Linkage in MEMS Design Synthesis.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Computer-Aided Engineering (CAD, CAE) and Design.