Logo - springer
Slogan - springer

Computer Science - Information Systems and Applications | Recommender Systems for Learning

Recommender Systems for Learning

Manouselis, N., Drachsler, H., Verbert, K., Duval, E.

2013, XI, 76 p. 4 illus.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$29.95

(net) price for USA

ISBN 978-1-4614-4361-2

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$39.95

(net) price for USA

ISBN 978-1-4614-4360-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Technology enhanced learning (TEL) aims to design, develop and test sociotechnical innovations that will support and enhance learning practices of both individuals and organisations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. Since information retrieval (in terms of searching for relevant learning resources to support teachers or learners) is a pivotal activity in TEL, the deployment of recommender systems has attracted increased interest. This brief attempts to provide an introduction to recommender systems for TEL settings, as well as to highlight their particularities compared to recommender systems for other application domains.

Content Level » Research

Keywords » Recommender systems - TEL datasets - personalization - recommendation algorithms - technology enhanced learning (TEL)

Related subjects » Education & Language - Information Systems and Applications

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Information Systems and Communication Service.