Logo - springer
Slogan - springer

Computer Science - Image Processing | Multiple Classifier Systems - 7th International Workshop, MCS 2007, Prague, Czech Republic, May

Multiple Classifier Systems

7th International Workshop, MCS 2007, Prague, Czech Republic, May 23-25, 2007, Proceedings

Haindl, Michal, Kittler, Josef, Roli, Fabio (Eds.)

2007, XI, 524 p. Also available online.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-540-72523-7

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-540-72481-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

This book constitutes the refereed proceedings of the 7th International Workshop on Multiple Classifier Systems, MCS 2007, held in Prague, Czech Republic in May 2007.

The 49 revised full papers presented together with two invited papers were carefully reviewed and selected from more than 80 initial submissions. The papers are organized in topical sections on kernel-based fusion, applications, boosting, cluster and graph ensembles, feature subspace ensembles, multiple classifier system theory, intramodal and multimodal fusion of biometric experts, majority voting, and ensemble learning.

Content Level » Research

Keywords » Bayesian network - Performance - Textur - algorithmic learning - bayesian networks - classification - cognition - decision trees - document analysis - ensemble prediction - genetic networks - learning classifier - networks - systems theory - verification

Related subjects » Artificial Intelligence - Image Processing - Theoretical Computer Science

Table of contents 

Kernel-Based Fusion.- Combining Pattern Recognition Modalities at the Sensor Level Via Kernel Fusion.- The Neutral Point Method for Kernel-Based Combination of Disjoint Training Data in Multi-modal Pattern Recognition.- Kernel Combination Versus Classifier Combination.- Deriving the Kernel from Training Data.- Applications.- On the Application of SVM-Ensembles Based on Adapted Random Subspace Sampling for Automatic Classification of NMR Data.- A New HMM-Based Ensemble Generation Method for Numeral Recognition.- Classifiers Fusion in Recognition of Wheat Varieties.- Multiple Classifier Methods for Offline Handwritten Text Line Recognition.- Applying Data Fusion Methods to Passage Retrieval in QAS.- A Co-training Approach for Time Series Prediction with Missing Data.- An Improved Random Subspace Method and Its Application to EEG Signal Classification.- Ensemble Learning Methods for Classifying EEG Signals.- Confidence Based Gating of Colour Features for Face Authentication.- View-Based Eigenspaces with Mixture of Experts for View-Independent Face Recognition.- Fusion of Support Vector Classifiers for Parallel Gabor Methods Applied to Face Verification.- Serial Fusion of Fingerprint and Face Matchers.- Boosting.- Boosting Lite – Handling Larger Datasets and Slower Base Classifiers.- Information Theoretic Combination of Classifiers with Application to AdaBoost.- Interactive Boosting for Image Classification.- Cluster and Graph Ensembles.- Group-Induced Vector Spaces.- Selecting Diversifying Heuristics for Cluster Ensembles.- Unsupervised Texture Segmentation Using Multiple Segmenters Strategy.- Classifier Ensembles for Vector Space Embedding of Graphs.- Cascading for Nominal Data.- Feature Subspace Ensembles.- A Combination of Sample Subsets and Feature Subsets in One-Against-Other Classifiers.- Random Feature Subset Selection for Ensemble Based Classification of Data with Missing Features.- Feature Subspace Ensembles: A Parallel Classifier Combination Scheme Using Feature Selection.- Stopping Criteria for Ensemble-Based Feature Selection.- Multiple Classifier System Theory.- On Rejecting Unreliably Classified Patterns.- Bayesian Analysis of Linear Combiners.- Applying Pairwise Fusion Matrix on Fusion Functions for Classifier Combination.- Modelling Multiple-Classifier Relationships Using Bayesian Belief Networks.- Classifier Combining Rules Under Independence Assumptions.- Embedding Reject Option in ECOC Through LDPC Codes.- Intramodal and Multimodal Fusion of Biometric Experts.- On Combination of Face Authentication Experts by a Mixture of Quality Dependent Fusion Classifiers.- Index Driven Combination of Multiple Biometric Experts for AUC Maximisation.- Q???stack: Uni- and Multimodal Classifier Stacking with Quality Measures.- Reliability-Based Voting Schemes Using Modality-Independent Features in Multi-classifier Biometric Authentication.- Optimal Classifier Combination Rules for Verification and Identification Systems.- Majority Voting.- Exploiting Diversity in Ensembles: Improving the Performance on Unbalanced Datasets.- On the Diversity-Performance Relationship for Majority Voting in Classifier Ensembles.- Hierarchical Behavior Knowledge Space.- Ensemble Learning.- A New Dynamic Ensemble Selection Method for Numeral Recognition.- Ensemble Learning in Linearly Combined Classifiers Via Negative Correlation.- Naïve Bayes Ensembles with a Random Oracle.- An Experimental Study on Rotation Forest Ensembles.- Cooperative Coevolutionary Ensemble Learning.- Robust Inference in Bayesian Networks with Application to Gene Expression Temporal Data.- An Ensemble Approach for Incremental Learning in Nonstationary Environments.- Invited Papers.- Multiple Classifier Systems in Remote Sensing: From Basics to Recent Developments.- Biometric Person Authentication Is a Multiple Classifier Problem.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Pattern Recognition.