Logo - springer
Slogan - springer

Computer Science - Image Processing | Multiple Classifier Systems - 6th International Workshop, MCS 2005, Seaside, CA, USA, June 13-15,

Multiple Classifier Systems

6th International Workshop, MCS 2005, Seaside, CA, USA, June 13-15, 2005, Proceedings

Oza, N.C., Polikar, R., Kittler, J., Roli, F. (Eds.)

2005, XII, 430 p. Also available online.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-3-540-31578-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-3-540-26306-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

The belief that a committee of people make better decisions than any individual is widely held and appreciated. We also understand that, for this to be true, the members of the committee have to be simultaneously competent and comp- mentary. This intuitive notion holds true for committees of data sources (such as sensors) and models (such as classi?ers). The substantial current research in the areas of data fusion and model fusion focuses on ensuring that the di?- ent sources provide useful information but nevertheless complement one another to yield better results than any source would on its own. During the 1990s, a variety of schemes in classi?er fusion, which is the focus of this workshop, were developed under many names in di?erent scienti?c communities such as machine learning, pattern recognition, neural networks, and statistics. The previous ?ve workshops on Multiple Classi?er Systems (MCS) were themselves exercises in information fusion, with the goal of bringing the di?erent scienti?c commu- ties together, providing each other with di?erent perspectives on this fascinating topic, and aiding cross-fertilization of ideas. These ?ve workshops achieved this goal, demonstrating signi?cant advances in the theory, algorithms, and appli- tions of multiple classi?er systems. Followingits?vepredecessorspublishedbySpringer,thisvolumecontainsthe proceedings of the 6th International Workshop on Multiple Classi?er Systems (MCS2005)heldattheEmbassySuitesinSeaside,California,USA,June13–15, 2005. Forty-two papers were selected by the Scienti?c Committee, and they were organized into the following sessions: Boosting, Combination Methods, Design of Ensembles, Performance Analysis, and Applications.

Content Level » Research

Keywords » Performance - Textur - algorithmic learning - algorithms - biometric authentication - classification - classifier systems - clustering - cognition - document analysis - image analysis - learning - learning classifier systems - machine learning - verification

Related subjects » Artificial Intelligence - Image Processing - Theoretical Computer Science

Table of contents 

Future Directions.- Semi-supervised Multiple Classifier Systems: Background and Research Directions.- Boosting.- Boosting GMM and Its Two Applications.- Boosting Soft-Margin SVM with Feature Selection for Pedestrian Detection.- Observations on Boosting Feature Selection.- Boosting Multiple Classifiers Constructed by Hybrid Discriminant Analysis.- Combination Methods.- Decoding Rules for Error Correcting Output Code Ensembles.- A Probability Model for Combining Ranks.- EER of Fixed and Trainable Fusion Classifiers: A Theoretical Study with Application to Biometric Authentication Tasks.- Mixture of Gaussian Processes for Combining Multiple Modalities.- Dynamic Classifier Integration Method.- Recursive ECOC for Microarray Data Classification.- Using Dempster-Shafer Theory in MCF Systems to Reject Samples.- Multiple Classifier Fusion Performance in Networked Stochastic Vector Quantisers.- On Deriving the Second-Stage Training Set for Trainable Combiners.- Using Independence Assumption to Improve Multimodal Biometric Fusion.- Design Methods.- Half-Against-Half Multi-class Support Vector Machines.- Combining Feature Subsets in Feature Selection.- ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments.- Using Decision Tree Models and Diversity Measures in the Selection of Ensemble Classification Models.- Ensembles of Classifiers from Spatially Disjoint Data.- Optimising Two-Stage Recognition Systems.- Design of Multiple Classifier Systems for Time Series Data.- Ensemble Learning with Biased Classifiers: The Triskel Algorithm.- Cluster-Based Cumulative Ensembles.- Ensemble of SVMs for Incremental Learning.- Performance Analysis.- Design of a New Classifier Simulator.- Evaluation of Diversity Measures for Binary Classifier Ensembles.- Which Is the Best Multiclass SVM Method? An Empirical Study.- Over-Fitting in Ensembles of Neural Network Classifiers Within ECOC Frameworks.- Between Two Extremes: Examining Decompositions of the Ensemble Objective Function.- Data Partitioning Evaluation Measures for Classifier Ensembles.- Dynamics of Variance Reduction in Bagging and Other Techniques Based on Randomisation.- Ensemble Confidence Estimates Posterior Probability.- Applications.- Using Domain Knowledge in the Random Subspace Method: Application to the Classification of Biomedical Spectra.- An Abnormal ECG Beat Detection Approach for Long-Term Monitoring of Heart Patients Based on Hybrid Kernel Machine Ensemble.- Speaker Verification Using Adapted User-Dependent Multilevel Fusion.- Multi-modal Person Recognition for Vehicular Applications.- Using an Ensemble of Classifiers to Audit a Production Classifier.- Analysis and Modelling of Diversity Contribution to Ensemble-Based Texture Recognition Performance.- Combining Audio-Based and Video-Based Shot Classification Systems for News Videos Segmentation.- Designing Multiple Classifier Systems for Face Recognition.- Exploiting Class Hierarchies for Knowledge Transfer in Hyperspectral Data.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Pattern Recognition.