Logo - springer
Slogan - springer

Computer Science - Image Processing | Discrete Calculus - Applied Analysis on Graphs for Computational Science

Discrete Calculus

Applied Analysis on Graphs for Computational Science

Grady, Leo J., Polimeni, Jonathan

2010, XVI, 366 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$119.00

(net) price for USA

ISBN 978-1-84996-290-2

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$159.00

(net) price for USA

ISBN 978-1-84996-289-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$159.00

(net) price for USA

ISBN 978-1-4471-5737-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Presents a thorough review of discrete calculus, with a focus on key concepts required for successful application
  • Unifies many standard image processing algorithms into a common framework
  • Provides numerous example applications from several fields of computational science, applying this framework to a broad range of problems

The field of discrete calculus, also known as "discrete exterior calculus", focuses on finding a proper set of definitions and differential operators that make it possible to operate the machinery of multivariate calculus on a finite, discrete space. In contrast to traditional goals of finding an accurate discretization of conventional multivariate calculus, discrete calculus establishes a separate, equivalent calculus that operates purely in the discrete space without any reference to an underlying continuous process.

This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Although there have been a few intersections in the literature between these disciplines, they have developed largely independently of one another, yet researchers working in any one of these three areas can strongly benefit from the tools and techniques being used in the others. Many example applications from several fields of computational science are provided to demonstrate the usefulness of this framework to a broad range of problems. Readers are assumed to be familiar with the basics of vector calculus, graph theory, and linear algebra.

Topics and features:

  • Presents a thorough review of discrete calculus, with a focus on key concepts required for successful application
  • Unifies many standard image processing algorithms into a common framework for viewing a wide variety of standard algorithms in filtering, clustering, and manifold learning that may be applied to processing data associated with a graph or network
  • Explains how discrete calculus provides a natural definition of "low-frequency" on a graph, which then yields filtering and denoising algorithms
  • Discusses how filtering algorithms can give rise to clustering algorithms, which can be used to develop manifold learning and data discovery methods
  • Examines ranking algorithms, as well as algorithms for analyzing the structure of a network

Graduate students and researchers interested in discrete calculus, complex networks, image processing and computer graphics will find this text/reference a clear introduction to the foundations of discrete calculus as well as a useful guide to have readily available for their work.

Dr. Leo J. Grady is a Senior Research Scientist with Siemens Corporate Research in Princeton, New Jersey, USA. Dr. Jonathan R. Polimeni is a Research Fellow at the Massachusetts General Hospital in Boston, Massachusetts, USA, and Instructor in Radiology at Harvard Medical School, Boston, Massachusetts, USA.

Content Level » Research

Keywords » Analysis - Graph - Graph theory - algorithms - complex network - linear algebra - optimization

Related subjects » Computational Science & Engineering - Image Processing - Theoretical, Mathematical & Computational Physics

Table of contents 

Discrete Calculus: History and Future Part I: A Brief Review of Discrete Calculus Introduction to Discrete Calculus Circuit Theory and Other Discrete Physical Models Part II: Applications of Discrete Calculus Building a Weighted Complex from Data Filtering on Graphs Clustering and Segmentation Manifold Learning and Ranking Measuring Networks Representation and Storage of a Graph and Complex Optimization The Hodge Theorem: A Generalization of the Helmholtz Decomposition

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Image Processing and Computer Vision.