Logo - springer
Slogan - springer

Computer Science - Image Processing | Concise Computer Vision

Concise Computer Vision

An Introduction into Theory and Algorithms

Klette, Reinhard

2014, XVIII, 429 p. 298 illus., 229 illus. in color.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4471-6320-6

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4471-6319-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • Presents an accessible general introduction to the essential topics in computer vision
  • Provides classroom-tested programming exercises and review questions at the end of each chapter
  • Includes supporting information on historical context, suggestions for further reading and hints on mathematical subjects under discussion

Many textbooks on computer vision can be unwieldy and intimidating in their coverage of this extensive discipline. This textbook addresses the need for a concise overview of the fundamentals of this field.

Concise Computer Vision provides an accessible general introduction to the essential topics in computer vision, highlighting the role of important algorithms and mathematical concepts. Classroom-tested programming exercises and review questions are also supplied at the end of each chapter.

Topics and features:

  • Provides an introduction to the basic notation and mathematical concepts for describing an image, and the key concepts for mapping an image into an image
  • Explains the topologic and geometric basics for analysing image regions and distributions of image values, and discusses identifying patterns in an image
  • Introduces optic flow for representing dense motion, and such topics in sparse motion analysis as keypoint detection and descriptor definition, and feature tracking using the Kalman filter
  • Describes special approaches for image binarization and segmentation of still images or video frames
  • Examines the three basic components of a computer vision system, namely camera geometry and photometry, coordinate systems, and camera calibration
  • Reviews different techniques for vision-based 3D shape reconstruction, including the use of structured lighting, stereo vision, and shading-based shape understanding
  • Includes a discussion of stereo matchers, and the phase-congruency model for image features
  • Presents an introduction into classification and learning, with a detailed description of basic AdaBoost and the use of random forests

This concise and easy to read textbook/reference is ideal for an introductory course at third- or fourth-year level in an undergraduate computer science or engineering programme.

Content Level » Upper undergraduate

Keywords » Computer Vision - Feature Detection and Tracking - Image Processing and Analysis - Image Segmentation - Object Detection - Shape Reconstruction

Related subjects » Artificial Intelligence - Image Processing

Table of contents / Preface / Sample pages 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Image Processing and Computer Vision.

Additional information