Logo - springer
Slogan - springer

Computer Science - Image Processing | Efficient Algorithms for Discrete Wavelet Transform - With Applications to Denoising and Fuzzy

Efficient Algorithms for Discrete Wavelet Transform

With Applications to Denoising and Fuzzy Inference Systems

Shukla, S K, Tiwari, Arvind K.

2013, IX, 91 p. 46 illus., 31 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$29.95

(net) price for USA

ISBN 978-1-4471-4941-5

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$39.95

(net) price for USA

ISBN 978-1-4471-4940-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Describes a mathematical model to predict the errors introduced in the implementation of the discrete wavelet transform (DWT) on fixed-point processors
  • Explores the application of DWT on benchmark signals and images in terms of denoising
  • Proposes a modified threshold selection and thresholding scheme

Transforms are an important part of an engineer’s toolkit for solving signal processing and polynomial computation problems. In contrast to the Fourier transform-based approaches where a fixed window is used uniformly for a range of frequencies, the wavelet transform uses short windows at high frequencies and long windows at low frequencies. This way, the characteristics of non-stationary disturbances can be more closely monitored. In other words, both time and frequency information can be obtained by wavelet transform. Instead of transforming a pure time description into a pure frequency description, the wavelet transform finds a good promise in a time-frequency description.

Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in digital signal processing (speech and image processing), communication, computer science and mathematics. Wavelet transforms are known to have excellent energy compaction characteristics and are able to provide perfect reconstruction. Therefore, they are ideal for signal/image processing. The shifting (or translation) and scaling (or dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation.

The nature of wavelet computation forces us to carefully examine the implementation methodologies. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated recursively, and in addition to the wavelet decomposition stage, extra space is required to store the intermediate coefficients. Hence, the overall performance depends significantly on the precision of the intermediate DWT coefficients.

This work presents new implementation techniques of DWT, that are efficient in terms of computation requirement, storage requirement, and with better signal-to-noise ratio in the reconstructed signal.

Content Level » Research

Keywords » Discrete Wavelet Transform - Efficient Algorithms - Error Analysis - Fuzzy Expert Systems - Image Processing - Noise Cancellation - Parallel Programming - Parallel Virtual Machine - Signal Processing

Related subjects » Image Processing - Signals & Communication - Theoretical Computer Science

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Image Processing and Computer Vision.