Logo - springer
Slogan - springer

Computer Science - Database Management & Information Retrieval | Data Science and Engineering - a SpringerOpen journal

Data Science and Engineering

Data Science and Engineering

Editors-in-Chief: J. Li; E. Bertino

ISSN: 2364-1185 (print version)
ISSN: 2364-1541 (electronic version)

Journal no. 41019

PB_Banner_Open_Access_13317_ani_575x60 PB_Banner_A39778_BBanner_Change_the_World_2017=PB_575x60px

Thorough coverage of advances in the closely related fields of data science and data engineering, particularly big data

  • DSE journal is an official publication of China Computer Federation
  • Integrates theories and methods from computer science, statistics, information science, and other fields
  • Publishes original papers on data collection and management, data integration and correlation, information and knowledge extraction, and data applications, etc.
  • Rapid review and publication of articles

Data Science and Engineering (DSE) is an international, peer-reviewed, and open access journal published under the brand SpringerOpen. DSE is published on behalf of the China Computer Federation (CCF). Focusing on the theoretical background and advanced engineering approaches, DSE aims to offer a prime forum for researchers, professionals, and industrial practitioners to share their knowledge in this rapidly growing area. It provides in-depth coverage of the latest advances in the closely related fields of data science and data engineering.

More specifically, DSE covers four areas: (i) the data itself, i.e., the nature and quality of the data, especially big data; (ii) the principles of information extraction from data, especially big data; (iii) the theory behind data-intensive computing; and (iv) the techniques and systems used to analyze and manage big data.

DSE publishes high-quality, original research papers, brief reports, and critical reviews in all theoretical, technological, and interdisciplinary studies that make up the fields of data science and engineering and its applications.  

This is an open access journal, which is freely accessible online to anyone, anywhere. The open access fees (article-processing charges) are fully sponsored. Authors can publish in the journal without any additional charges.

Related subjects » Artificial Intelligence - Database Management & Information Retrieval - Security and Cryptology - Statistics - Theoretical Computer Science

Abstracted/Indexed in 

Google Scholar, DBLP, EBSCO Discovery Service, OCLC, Summon by ProQuest

For authors and editors

  • Aims and Scope

    Aims and Scope

    Close

    The journal of Data Science and Engineering (DSE) responds to the remarkable change in the focus of information technology development from CPU-intensive computation to data-intensive computation, where the effective application of data, especially big data, becomes vital. The emerging discipline data science and engineering, an interdisciplinary field integrating theories and methods from computer science, statistics, information science, and other fields, focuses on the foundations and engineering of efficient and effective techniques and systems for data collection and management, for data integration and correlation, for information and knowledge extraction from massive data sets, and for data use in different application domains.

    Focusing on the theoretical background and advanced engineering approaches, DSE aims to offer a prime forum for researchers, professionals, and industrial practitioners to share their knowledge in this rapidly growing area. It provides in-depth coverage of the latest advances in the closely related fields of data science and data engineering. More specifically, DSE covers four areas: (i) the data itself, i.e., the nature and quality of the data, especially big data; (ii) the principles of information extraction from data, especially big data; (iii) the theory behind data-intensive computing; and (iv) the techniques and systems used to analyze and manage big data. DSE welcomes papers that explore the above subjects. Specific topics include, but are not limited to:

    (a) the nature and quality of data,

    (b) the computational complexity of data-intensive computing,

    (c) new methods for the design and analysis of the algorithms for solving problems with big data input,

    (d) collection and integration of data collected from internet and sensing devises or sensor networks,

    (e) representation, modeling, and visualization of  big data,

    (f)  storage, transmission, and management of big data,

    (g) methods and algorithms of  data intensive computing, such as

    • mining big data,
    • online analysis processing of big data,
    • big data-based machine learning,
    • big data based decision-making,
    • statistical computation of big data,
    • graph-theoretic computation of big data,
    • linear algebraic computation of big data, and  
    • big data-based optimization.

    (h) hardware systems and software systems for data-intensive computing,

    (i) data security, privacy, and trust, and

    (j) novel applications of big data.

     

  • Submit Online
  • Instructions for Authors (pdf, 447 kB)
  • LaTeX Template (zip, 182 kB)
  • Copyright and License Agreement

Alerts for this journal

 

Get the table of contents of every new issue published in Data Science and Engineering.