Logo - springer
Slogan - springer

Computer Science - Database Management & Information Retrieval | Soft Computing in Information Retrieval - Techniques and Applications

Soft Computing in Information Retrieval

Techniques and Applications

Crestani, Fabio, Pasi, Gabriella (Eds.)

2000, XII, 396 p.

A product of Physica Verlag Heidelberg
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$149.00

(net) price for USA

ISBN 978-3-7908-1849-9

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-3-7908-1299-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-3-7908-2473-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Information retrieval (IR) aims at defining systems able to provide a fast and effective content-based access to a large amount of stored information. The aim of an IR system is to estimate the relevance of documents to users' information needs, expressed by means of a query. This is a very difficult and complex task, since it is pervaded with imprecision and uncertainty. Most of the existing IR systems offer a very simple model of IR, which privileges efficiency at the expense of effectiveness. A promising direction to increase the effectiveness of IR is to model the concept of "partially intrinsic" in the IR process and to make the systems adaptive, i.e. able to "learn" the user's concept of relevance. To this aim, the application of soft computing techniques can be of help to obtain greater flexibility in IR systems.

Content Level » Research

Keywords » Bayesian network - algorithms - classification - data mining - fuzzy - fuzzy sets - genetic algorithms - information - information retrieval - learning - multimedia - networks - neural networks - probabilistic reasoning - uncertainty

Related subjects » Artificial Intelligence - Business Information Systems - Database Management & Information Retrieval

Table of contents 

Fuzzy Set Theory: R.R. Yager: A Framework for Linguistic and Hierarchical Queries in Document Retrieval.- G. Bordogna, G. Pasi: Application of Fuzzy Set Theory to Extend Boolean Information Retrieval.- L. Kóczy, T. Gedeon: A Model of Intelligent Information Retrieval Using Fuzzy Tolerance Relations Based on Hierarchical Co-Occurence of Words.- J.-W. Lim: Visual Keywords: from Text Retrieval to Multimedia Retrieval.- D. Merkl, A. Rauber: Document Classification with Unsupervised Artificial Neural Networks.- H. Chen, M. Ramsey, P. Li: The Java Search Agent Workshop.- S. Zrehen: A Connectionist Approach to Content Access in Documents: Application to Detection of Jokes.- Genetic Algorithms: M. Boughanem, C. Chrismet, J. Mothe, C. Soule-Dupuy, L. Tamine: Connectionist and Genetic Approaches for Information Retrieval.- D. Vrajizoru: Large Population or Many Generations for Genetic Algorithms? Implications in Information Retrieval.- Evidential and Probabilistic Reasoning: J. Picard, J. Savoy: A Logical Information Retrieval Model Based on a Combination of Propositional Logic and Probability Theory.- B. Ribeiro-Neto, I. Silva, R. Muntz: Bayesian Network Models for Information Retrieval.- G. Amati, F. Crestani: Probabilistic Learning by Uncertainty Sampling with Non-Binary Relevance.- Rough Sets Theory, Multivalued Logics, and Other Approaches: S.K.M. Wong, Y.Y. Yao, C.J. Butz: Granular Information Retrieval.- U. Straccia: A Framework for the Retrieval of Multimedia Objects Based on Four-Valued Fuzzy Descritpion Logics.- P. Srinivasan, D. Kraft, J. Chen: Rough and Fuzzy Sets for Data Mining of a Controlles Vocabulary for Textual Retrieval.- S. Miyamoto: Rough Sets and Multisets in a Model of Information Retrieval.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Information Storage and Retrieval.