Logo - springer
Slogan - springer

Computer Science - Database Management & Information Retrieval | Fundamentals of Predictive Text Mining

Fundamentals of Predictive Text Mining

Weiss, Sholom M., Indurkhya, Nitin, Zhang, Tong

2010, XIV, 283p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$49.95

(net) price for USA

ISBN 978-1-84996-226-1

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$69.95

(net) price for USA

ISBN 978-1-84996-225-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$69.95

(net) price for USA

ISBN 978-1-4471-2565-5

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Presents a comprehensive and practical and introduction to text mining
  • Includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter
  • Provides several descriptive case studies that take readers from problem description to systems deployment in the real world

One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining - the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents.

Developed from the authors' highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers.

Topics and features:

  • Presents a comprehensive, practical and easy-to-read introduction to text mining
  • Includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter
  • Explores the application and utility of each method, as well as the optimum techniques for specific scenarios
  • Provides several descriptive case studies that take readers from problem description to systems deployment in the real world
  • Includes access to industrial-strength text-mining software that runs on any computer.
  • Describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English)
  • Contains links to free downloadable software and other supplementary instruction material

Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.

Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.

Content Level » Research

Keywords » Active Learning - Document Classification and Correction - Extraction - Retrieval - Summarization - classification - clustering - computer science - data mining - database - information retrieval - machine learning - search engine marketing (SEM) - statistics - text mi

Related subjects » Database Management & Information Retrieval - Information Systems and Applications

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Data Mining and Knowledge Discovery.