Logo - springer
Slogan - springer

Computer Science - Communication Networks | Steiner Trees in Industry

Steiner Trees in Industry

Series: Combinatorial Optimization, Vol. 11

Cheng, Xiuzhen, Du, Ding-Zhu (Eds.)

2001, XI, 507 p.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4613-0255-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4020-0099-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • About this book

This book is a collection of articles studying various Steiner tree prob­ lems with applications in industries, such as the design of electronic cir­ cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect­ ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Schreiber in 1986 found that this generalization (i.e., the Steiner mini­ mum tree) was first proposed by Gauss.

Content Level » Research

Related subjects » Communication Networks - Electronics & Electrical Engineering - Evolutionary & Developmental Biology - Information Systems and Applications - Theoretical Computer Science

Table of contents 

Foreword. Steiner Minimum Trees in Uniform Orientation Metrics; M. Brazil. Genetic Algorithm Approaches to Solve Various Steiner Tree Problems; G. Chakraborty. Neural Network Approaches to Solve Various Steiner Tree Problems; G. Chakraborty. Steiner Tree Problems in VLSI Layout Designs; Jung-Dong Cho. Polyhedral Approaches for the Steiner Tree Problem on Graphs; S. Chopra, Chih-Yang Tsai. The Perfect Phylogeny Problem; D. Fernández-Baca. Approximation Algorithms for the Steiner Tree Problems in Graphs; C. Gröpl, et al. A Proposed Experiment on Soap Film Solutions of Planar Euclidean Steiner Trees; F.K. Hwang. SteinLib: An Updated Library on Steiner Tree Problems in Graphs; T. Koch, et al. Steiner Tree Based Distributed Multicast Routing in Networks; R. Novak, et al. On Cost Allocation in Steiner Tree Networks; D. Skorin-Kapov. Steiner Trees and the Dynamic Quadratic Assignment Problem; J.M. Smith. Polynomial Time Algorithms for the Rectilinear Steiner Tree Problem; D.A. Thomas, Jai F. Weng. Minimum Networks for Separating and Surrounding Objects; Jai F. Weng. A First Level Scatter Search Implementation for Solving the Steiner Ring Problem in Telecommunications Network Design; Jiefeng Xu, et al. The Rectilinear Steiner Tree Problem: A Tutorial; M. Zachariasen.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Computer Communication Networks.