Logo - springer
Slogan - springer

Computer Science - Bioinformatics | Information-Theoretic Evaluation for Computational Biomedical Ontologies

Information-Theoretic Evaluation for Computational Biomedical Ontologies

Clark, Wyatt Travis

2014, VII, 46 p. 12 illus., 6 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$39.99

(net) price for USA

ISBN 978-3-319-04138-4

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$54.99

(net) price for USA

ISBN 978-3-319-04137-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Provides a concise overview of a proven method for evaluating the performance of computational protein-function prediction
  • Proposes a solution that is critical in disease-gene prioritisation, an increasingly hot topic
  • Defines important concepts for scientists using information-theoretic approaches in their algorithms development
The development of effective methods for the prediction of ontological annotations is an important goal in computational biology, yet evaluating their performance is difficult due to problems caused by the structure of biomedical ontologies and incomplete annotations of genes. This work proposes an information-theoretic framework to evaluate the performance of computational protein function prediction. A Bayesian network is used, structured according to the underlying ontology, to model the prior probability of a protein's function. The concepts of misinformation and remaining uncertainty are then defined, that can be seen as analogs of precision and recall. Finally, semantic distance is proposed as a single statistic for ranking classification models. The approach is evaluated by analyzing three protein function predictors of gene ontology terms. The work addresses several weaknesses of current metrics, and provides valuable insights into the performance of protein function prediction tools.

Content Level » Research

Keywords » Algorithm Development - Information Theory - Ontology - Protein Function Prediction - Semantic Evaluation

Related subjects » Bioinformatics - Human Genetics - Image Processing - Public Health - Theoretical Computer Science

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Computational Biology / Bioinformatics.