Logo - springer
Slogan - springer



Zheng, Pei, Da, Ruan

2010, XX, 276p.

A product of Atlantis Press

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

(net) price for USA

ISBN 978-94-91216-28-2

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items

Humans employ mostly natural languages in describing and representing problems, c- puting and reasoning, arriving at ?nal conclusions described similarly as words in a natural language or as the form of mental perceptions. To make machines imitate humans’ mental activities, the key point in terms of machine intelligence is to process uncertain information by means of natural languages with vague and imprecise concepts. Zadeh (1996a) proposed a concept of Computing with Words (CWW) to model and c- pute with linguistic descriptions that are propositions drawn from a natural language. CWW, followed the concept of linguistic variables (Zadeh, 1975a,b) and fuzzy sets (Zadeh, 1965), has been developed intensively and opened several new vast research ?elds as well as applied in various areas, particularly in the area of arti?cial intelligence. Zadeh (1997, 2005) emphasized that the core conceptions in CWW are linguistic variables and fuzzy logic (or approximate reasoning). In a linguistic variable, each linguistic value is explained by a fuzzy set (also called semantics of the linguistic value), its membership function is de?ned on the universe of discourse of the linguistic variable. By fuzzy sets, linguistic information or statements are quanti?ed by membership functions, and infor- tion propagation is performed by approximate reasoning. The use of linguistic variables implies processes of CWW such as their fusion, aggregation, and comparison. Different computational approaches in the literature addressed those processes (Wang, 2001; Zadeh and Kacprzyk, 1999a, b). Membership functions are generally at the core of many fuzzy-set theories based CWW.

Content Level » Research

Keywords » information processing - linguistic values

Related subjects » Artificial Intelligence

Table of contents 

The 2-Tuple Fuzzy Linguistic Representation Model.- Hedge Algebras of Linguistic Values.- Linguistic Information Processing Based on Lattice Structrure.- Fuzzy Number Indexes of Linguistic Values.- Hierarchical Structure Analysis of Linguistic Values.- Conclusions and RelatedWorks.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Language Translation and Linguistics.