Logo - springer
Slogan - springer

Computer Science - Artificial Intelligence | Innovative Teaching and Learning - Knowledge-Based Paradigms

Innovative Teaching and Learning

Knowledge-Based Paradigms

Jain, Professor Lakhmi C.

2000, XII, 334 p.

A product of Physica Verlag Heidelberg
Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$149.00

(net) price for USA

ISBN 978-3-7908-1868-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-3-7908-1246-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-3-7908-2465-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • About this book

Presented are innovative teaching and learning techniques for the teaching of knowledge-based paradigms. The main knowledge-based intelligent paradigms are expert systems, artificial neural networks, fuzzy systems and evolutionary computing. Expert systems are designed to mimic the performance of biological systems. Artificial neural networks can mimic the biological information processing mechanism in a very limited sense. Evolutionary computing algorithms are used for optimization applications, and fuzzy logic provides a basis for representing uncertain and imprecise knowledge.

Content Level » Research

Keywords » artificial intelligence - artificial neural network - evolution - evolutionary computation - expert system - fuzzy - fuzzy logic - fuzzy system - information - information processing - intelligence - learning - modeling - networks - optimization

Related subjects » Artificial Intelligence - Business Information Systems

Table of contents 

D. Tedman, L.C. Jain: An Introduction to Innovative Teaching and Learning.- R.S.T. Lee, J.N.K. Liu: Teaching and Learning the AI Modeling.- C.L. Karr, C. Sunal, C. Smith: Artificial Intelligence Techniques for an Interdisciplinary Science Course.- J.F. Vega-Riveros: On the Architecture of Intelligent Tutoring Systems and its Application to a Neural Networks Course.- V. Devedzic: Teaching Knowledge Modeling at the Graduate Level - a Case Study.- V. Devedzic, D. Radovic, L. Jerinic: Innovative Modeling Techniques for Intelligent Tutoring Systems.- J. Fulcher: Teaching Course on Artificial Neural Networks.- T. Hiyama: Innovative Education for Fuzzy Logic Stabilization of Electric Power Systems in a Matlab/Simulink Environment.- W.L. Goh, S.K. Amarasinghe: A Neural Network Wokbench for Teaching and Learning.- C.A. Higgins, F.Z. Mansouri: PRAM: A Courseware System for the Automatic Assessment of AI Programs.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Artificial Intelligence (incl. Robotics).