Logo - springer
Slogan - springer

Computer Science - Artificial Intelligence | Hebbian Learning and Negative Feedback Networks

Hebbian Learning and Negative Feedback Networks

Fyfe, Colin

2005, XVIII, 383 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$149.00

(net) price for USA

ISBN 978-1-84628-118-1

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-1-85233-883-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-1-84996-945-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

This book is the outcome of a decade’s research into a speci?c architecture and associated learning mechanism for an arti?cial neural network: the - chitecture involves negative feedback and the learning mechanism is simple Hebbian learning. The research began with my own thesis at the University of Strathclyde, Scotland, under Professor Douglas McGregor which culminated with me being awarded a PhD in 1995 [52], the title of which was “Negative Feedback as an Organising Principle for Arti?cial Neural Networks”. Naturally enough, having established this theme, when I began to sup- vise PhD students of my own, we continued to develop this concept and this book owes much to the research and theses of these students at the Applied Computational Intelligence Research Unit in the University of Paisley. Thus we discuss work from • Dr. Darryl Charles [24] in Chapter 5. • Dr. Stephen McGlinchey [127] in Chapter 7. • Dr. Donald MacDonald [121] in Chapters 6 and 8. • Dr. Emilio Corchado [29] in Chapter 8. We brie?y discuss one simulation from the thesis of Dr. Mark Girolami [58] in Chapter 6 but do not discuss any of the rest of his thesis since it has already appeared in book form [59]. We also must credit Cesar Garcia Osorio, a current PhD student, for the comparative study of the two Exploratory Projection Pursuit networks in Chapter 8. All of Chapters 3 to 8 deal with single stream arti?cial neural networks.

Content Level » Research

Keywords » Artificial neural networks - Data mining - Exploratory data analyis - Hebbian learning - Kernel - Machine learning - Signal processing - Unsupervised learning - artificial neural network - learning - neural network

Related subjects » Artificial Intelligence - Computer Science - Image Processing - Theoretical Computer Science

Table of contents 

Introduction Part I - Single Stream Networks Background The Negative Feedback Network Peer-Inhibitory Neurons Multiple Cause Data Exploratory Data Analysis Topology Preserving Maps Maximum Likelihood Hebbian Learning Part II - Dual Stream Networks Two Neural Networks for Canonical Correlation Analysis Alternative Derivations of CCA Networks Kernel and Nonlinear Correlations Exploratory Correlation Analysis Multicollinearity and Partial Least Squares Twinned Principal curves The Future App. A. Negative Feedback Artificial Neural Networks B. Previous Factor Analysis Models C. Related Models for ICA D. Previous Dual Stream Approaches E. Data Sets References Index

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Artificial Intelligence (incl. Robotics).