Logo - springer
Slogan - springer

Computer Science - Artificial Intelligence | Evolving Connectionist Systems - The Knowledge Engineering Approach

Evolving Connectionist Systems

The Knowledge Engineering Approach

Kasabov, Nikola

Originally published in the Series: Perspectives in Neural Computing

2nd ed. 2007

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$149.00

(net) price for USA

ISBN 978-1-84628-347-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$189.00

(net) price for USA

ISBN 978-1-84628-345-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Updated new edition offers a fully extended, integrated approach to the analysis of evolving information processes at different levels
  • Up-to-the-minute material includes new trends and applications that relate to evolving systems

Evolving Connectionist Systems is aimed at all those interested in developing and using intelligent computational models and systems to solve challenging real world problems in computer science, engineering, bioinformatics and neuroinformatics. The book challenges scientists and practitioners with open questions about future creation of new information models inspired by Nature.

This second edition includes new methods for adaptive, knowledge-based learning, such as online incremental feature selection, spiking neural networks, transductive neuro-fuzzy inference, adaptive data and model integration, cellular automata and artificial life systems, particle swarm optimisation, ensembles of evolving systems, and quantum inspired neural networks.

New applications to gene and protein interaction modelling, brain data analysis and brain model creation, computational neuro-genetic modelling, adaptive speech, image and multimodal recognition, language modelling, adaptive robotics, modelling dynamic financial and socio-economic systems, and ecological modelling, are covered.

An important new feature of the book is the attempt to connect different structural and functional levels of a complex, intelligent system, looking for inspiration from functional relationships in natural systems, such as the genetic and the brain activity.

Overall, the book is more about problem solving and intelligent systems, than about mathematical proofs of theoretical models. Additional resources for practical model validation and system creation are attached as programs in the Appendix. Data, programs, colour figures and .ppt slides are available from: http://www.kedri.info/ and http://www.theneucom.com.

"This book is an important update on the first edition, taking account of exciting new developments in adaptive evolving systems. It is a very important book, and Nik should be congratulated on letting his enthusiasm shine through, but at the same time keeping his expertise as the ultimate guide. A must for all in the field!"

Professor John G Taylor, King’s College London

"This second edition provides fully integrated, up-to-date support for knowledge-based computing in a broad range of applications by students and professionals".

Professor Walter J Freeman,University of California at Berkeley

 

Content Level » Research

Keywords » Adaptive Time-Series Analysis - Connectionist Systems - Fuzzy Logic - Learning Systems - Neural Networks - Speech Recognition - artificial life - bioinformatics - image processing - information processing - intelligence - intelligent systems - knowledge engineering - modeling - robotics

Related subjects » Artificial Intelligence - Image Processing - Robotics - Software Engineering - Systems Biology and Bioinformatics - Theoretical Computer Science

Table of contents 

Evolving Connectionist Methods.- Feature Selection, Model Creation, and Model Validation.- Evolving Connectionist Methods for Unsupervised Learning.- Evolving Connectionist Methods for Supervised Learning.- Brain Inspired Evolving Connectionist Models.- Evolving Neuro-Fuzzy Inference Models.- Population-Generation-Based Methods: Evolutionary Computation.- Evolving Integrated Multimodel Systems.- Evolving Intelligent Systems.- Adaptive Modelling and Knowledge Discovery in Bioinformatics.- Dynamic Modelling of Brain Functions and Cognitive Processes.- Modelling the Emergence of Acoustic Segments in Spoken Languages.- Evolving Intelligent Systems for Adaptive Speech Recognition.- Evolving Intelligent Systems for Adaptive Image Processing.- Evolving Intelligent Systems for Adaptive Multimodal Information Processing.- Evolving Intelligent Systems for Robotics and Decision Support.- What Is Next: Quantum Inspired Evolving Intelligent Systems?.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Artificial Intelligence (incl. Robotics).