Logo - springer
Slogan - springer

Computer Science - Artificial Intelligence | Linear Genetic Programming

Linear Genetic Programming

Brameier, Markus F., Banzhaf, Wolfgang

2007, XIII, 315 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$129.00

(net) price for USA

ISBN 978-0-387-31030-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$169.00

(net) price for USA

ISBN 978-0-387-31029-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$169.00

(net) price for USA

ISBN 978-1-4419-4048-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Linear Genetic Programming examines the evolution of imperative computer programs written as linear sequences of instructions. In contrast to functional expressions or syntax trees used in traditional Genetic Programming (GP), Linear Genetic Programming (LGP) employs a linear program structure as genetic material whose primary characteristics are exploited to achieve acceleration of both execution time and evolutionary progress. Online analysis and optimization of program code lead to more efficient techniques and contribute to a better understanding of the method and its parameters. In particular, the reduction of structural variation step size and non-effective variations play a key role in finding higher quality and less complex solutions. This volume investigates typical GP phenomena such as non-effective code, neutral variations and code growth from the perspective of linear GP.

The text is divided into three parts, each of which details methodologies and illustrates applications. Part I introduces basic concepts of linear GP and presents efficient algorithms for analyzing and optimizing linear genetic programs during runtime. Part II explores the design of efficient LGP methods and genetic operators inspired by the results achieved in Part I. Part III investigates more advanced techniques and phenomena, including effective step size control, diversity control, code growth, and neutral variations.

The book provides a solid introduction to the field of linear GP, as well as a more detailed, comprehensive examination of its principles and techniques. Researchers and students alike are certain to regard this text as an indispensable resource.

Content Level » Research

Keywords » Step Size Control - Syntax - algorithms - code growth - diversity control - evolutionary algorithm - genetic algorithms - genetic operators - genetic programming - learning - linear genetic programming - machine learning - neutral variations - optimization - programming

Related subjects » Artificial Intelligence - Theoretical Computer Science

Table of contents / Sample pages 

Fundamental Analysis.- Basic Concepts of Linear Genetic Programming.- Characteristics of the Linear Representation.- A Comparison with Neural Networks.- Method Design.- Linear Genetic Operators I — Segment Variations.- Linear Genetic Operators II — Instruction Mutations.- Analysis of Control Parameters.- A Comparison with Tree-Based Genetic Programming.- Advanced Techniques and Phenomena.- Control of Diversity and Variation Step Size.- Code Growth and Neutral Variations.- Evolution of Program Teams.- Epilogue.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Artificial Intelligence (incl. Robotics).