Logo - springer
Slogan - springer

Computer Science - Artificial Intelligence | Algorithmic Learning in a Random World

Algorithmic Learning in a Random World

Vovk, Vladimir, Gammerman, Alex, Shafer, Glenn

2005, XVI, 324 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$119.00

(net) price for USA

ISBN 978-0-387-25061-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$149.00

(net) price for USA

ISBN 978-0-387-00152-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$149.00

(net) price for USA

ISBN 978-1-4419-3471-0

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Conformal prediction is a valuable new method of machine learning. Conformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accuracy and reliability.

This new monograph integrates mathematical theory and revealing experimental work. It demonstrates mathematically the validity of the reliability claimed by conformal predictors when they are applied to independent and identically distributed data, and it confirms experimentally that the accuracy is sufficient for many practical problems. Later chapters generalize these results to models called repetitive structures, which originate in the algorithmic theory of randomness and statistical physics. The approach is flexible enough to incorporate most existing methods of machine learning, including newer methods such as boosting and support vector machines and older methods such as nearest neighbors and the bootstrap.

Topics and Features:

    * Describes how conformal predictors yield accurate and reliable predictions,    complemented with quantitative measures of their accuracy and reliability

    * Handles both classification and regression problems

    * Explains how to apply the new algorithms to real-world data sets

    * Demonstrates the infeasibility of some standard prediction tasks

    * Explains connections with Kolmogorov’s algorithmic randomness, recent work in machine learning, and older work in statistics

   * Develops new methods of probability forecasting and shows how to use them for prediction in causal networks

 

Researchers in computer science, statistics, and artificial intelligence will find the book an authoritative and rigorous treatment of some of the most promising new developments in machine learning. Practitioners and students in all areas of research that use quantitative prediction or machine learning will learn about important new methods.

Content Level » Research

Keywords » Approximation - Conformal prediction - Randomness - Regression - algorithms - classification - learning - machine learning - modeling

Related subjects » Artificial Intelligence - Computational Statistics - Security and Cryptology

Table of contents 

Preface.- List of Principal results.- Introduction.- Conformal prediction.- Classification with conformal predictors.-Modifications of conformal predictors.- Probabilistic prediction I: impossibility results.- Probabilistic prediction II: Venn predictors.- Beyond exchangeability.- On-line compression modeling I: conformal prediction.- On-line compression modeling II: Venn prediction.- Perspectives and contrasts.- Appendix A: Probability theory.- Appendix B: Data sets.- Appendix C: FAQ.- Notation.- References.- Index

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Artificial Intelligence (incl. Robotics).