Skip to main content

Photophysics of Ionic Biochromophores

  • Book
  • © 2013

Overview

  • Provides a concise overview of investigations of ionic biochromophores
  • First integrated overview of the photophysics of different classes of biomolecules: from single amino acids over peptides and proteins to DNA
  • Introduces different experimental techniques for spectroscopic investigation of bio chromophore ions
  • Highly interdisciplinary work with relevance to chemistry, physics and biology/life sciences
  • Includes supplementary material: sn.pub/extras

Part of the book series: Physical Chemistry in Action (PCIA)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

Keywords

About this book

This book provides a concise overview of the photophysics and spectroscopy of bio chromophore ions. The book "Photophysics of Ionic Biochromophores" summarizes important recent advances in the spectroscopy of isolated biomolecular ions in vacuo, which has within the last decade become a highly active research field. Advanced instrumental apparatus and the steady increase in more and more powerful computers have made this development possible, both for experimentalists and theoreticians. Applied techniques described here include absorption and fluorescence spectroscopy, which are excellent indicators of environmental effects and can thus shed light on the intrinsic electronic structures of ions without perturbations from e.g. water molecules, counter ions, nearby charges, and polar amino acid residues. When compared with spectra of the chromophores in their natural environment, such spectra allow to identify possible perturbations. At the same time gas-phase spectra provide important benchmarks for quantum chemistry calculations of electronically excited states.

This volume focuses on biological systems from protein biochromophores, e.g. the protonated Schiff-base retinal responsible for vision, and individual aromatic amino acids to peptides and whole proteins, studied using visible, ultraviolet and vacuum ultraviolet light. Work on DNA nucleotides and strands that are amenable to mass spectrometric studies because of the negatively charged sugarphosphate backbone are also presented. DNA strands represent an example of the interplay between multiple chromophores, which is even harder to model correctly than just single chromophores due to spatially extended excited states and weak coupling terms. The experimental techniques used to measure spectra and commonly used theoretical methods are described with a discussion on limitations and advantages. The volume includes an updated status of the field and interesting future directions such as cold ionspectroscopy.

Editors and Affiliations

  • Department of Physics and Astronomy, Aarhus University Faculty of Science, Aarhus, Denmark

    Steen Brøndsted Nielsen

  • Department of Physics and Astronomy, Aarhus University Faculty of Science, Aarhus C, Denmark

    Jean Ann Wyer

Bibliographic Information

Publish with us