Logo - springer
Slogan - springer

Chemistry - Industrial Chemistry and Chemical Engineering | Fluoropolymers 2 - Properties

Fluoropolymers 2

Properties

Hougham, G.G., Cassidy, P.E., Johns, K., Davidson, T. (Eds.)

1999, XVII, 408 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$199.00

(net) price for USA

ISBN 978-0-306-46919-0

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$269.00

(net) price for USA

ISBN 978-0-306-46061-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$259.00

(net) price for USA

ISBN 978-1-4757-8619-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

The fluorine atom, by virtue of its electronegativity, size, and bond strength with carbon, can be used to create compounds with remarkable properties. Small molecules containing fluorine have many positive impacts on everyday life of which blood substitutes, pharmaceuticals, and surface modifiers are only a few examples. Fluoropolymers, too, while traditionally associated with extreme high performance applications have found their way into our homes, our clothing, and even our language. A recent American president was often likened to the tribology of PTFE. Since the serendipitous discovery of Teflon at the DuPont Jackson Laboratory in 1938, fluoropolymers have grown steadily in technological and marketplace importance. New synthetic fluorine chemistry, new processes, and new apprecia tion of the mechanisms by which fluorine imparts exceptional properties all contribute to accelerating growth in fluoropolymers. There are many stories of harrowing close calls in the fluorine chemistry lab, especially from the early years, and synthetic challenges at times remain daunting. But, fortunately, modem techniques and facilities have enabled significant strides toward taming both the hazards and synthetic uncertainties, In contrast to past environmental problems associated with fluorocarbon refrigerants, the exceptional properties of fluorine in polymers have great environmental value. Some fluoropolymers are enabling green technologies such as hydrogen fuel cells for automobiles and oxygen selective membranes for cleaner diesel combustion.

Content Level » Research

Keywords » Compound - Copolymer - Polyacrylate - alloy - liquid - modeling - polymer

Related subjects » Characterization & Evaluation of Materials - Industrial Chemistry and Chemical Engineering - Materials - Physical Chemistry - Polymer Science

Table of contents 

Fluoropolymers 1: Synthesis: Preface; G.G. Hougham. I. Synthesis: 1. Polyacrylates containing the Hexafluoroisopropylidene Function in the Pendant Groups; V.S. Reddy, et al. 2. Fluorinated Cyanate Polymers; A. Snow, L. Buckley. 3. Polymers from the Thermal 2 pi+2 pi Cyclodimerization of Fluorinated Olefins; D. Babb. 4. Functional Fluromonomers and Fluoropolymers; Ming-H. Hung, et al. 5. Use of Original Fluorinated Telomers in the Synthesis of Hybrid Silicones; B. Ameduri, et al. 6. Chlorotrifluoroethylene Suspension Polymerization; M.H. Andrus Jr., et al. 7. Fluorinated Polymers with Functional Groups: Synthesis and Application. LB-Films from Functional Fluoropolymers; B.V. Mislavsky. 8. Synthesis of Fluorinated Poly(arylethers) containing 1,4-Naphthalene Moieties; F. Mercer, et al. 9. Synthesis and Properties of Fluorine-Containing Aromatic Condensation Polymers obtained from Bisphenol-A F and its Derivatives; S. Nakamura, Y. Nishimoto. 10. Novel Fluorinated Block Copolymers Synthesis and Application; S. Oestrich, M. Antonietti. 11. Synthesis and Structure-Property Relationships of Low-Dielectric-Constant Fluorinated Polyacrylates; H.S.W. Hu, J.R. Griffith. 12. Epoxy Networks from a Fluorodiimidediol; H.S.W. Hu, J.R. Griffith. 13. Synthesis of Fluoropolymers in Liquid and Supercritical Carbon Dioxide Solvent Systems; J.P. Young, et al. II. Direct Fluorination: 14. Direct Fluorination of Polymers; R.J. Lagow, Han-Chao Wei. 15. Surface Fluorination of Polymers Using Xenon Difluoride; G. Barsamian, V. B. Sokolov. 16. New Surface Fluorinated Products; P.A.B. Carstens, et al. 17. Modified Surface Properties of Technical Yarns; M. Weber, D. Shilo. III. Vapour Deposition: 18. Vapour Deposition Polymerization as a Route to Fluorinated Polymers; J.A. Moore,Chi-I Lang. 19. Ultrathin PTFE, PVDF, and FEP Coatings Deposited using Plasma-Assisted Physical Vapour Deposition; K.J. Lawson, J.R. Nicholls. Index Fluoropolymers 2: Properties: I. Processing, Structure and Properties. 1. A Perspective on Solid State Microstructure in Polytetrafluoroethylene; T. Davidson, et al. 2. Teflon AF: A Family of Amorphous Fluoropolymers with Extraordinary Properties; P. Resnick, W. Buck. 3. Supercritical Fluids for Coatings from Analysis to Xenon: A Brief Overview; K. Johns, G. Stead. 4. The Material Properties of Fluoropolymers and Perfluoroalkyl-Based Polymers; R. Thomas. 5. Excimer Laser-Induced Ablation of Doped Poly(tetrafluoroethylene); C. Davis, et al. 6. Novel Solvent and Dispersal Systems for Fluoropolymers and Silicones; M. Grenfell. 7. Fluoropolymer Alloys&endash;Performance Optimization of PVDF Alloy; S. Lin, K. Argasanski. 8. The Solubility of Poly(tetrafluoroethylene) and its Copolymers; W. Tuminello. 9. Structure-Property Relations based on Fluoropolyether Macromers Coatings; S. Turri, et al. II. Modeling and Simulation: 10. Molecular Modeling of Fluoropolymers: Fluorotetrafluroethylene; B.L. Farmer, et al. 11. Material Behavior o

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Industrial Chemistry / Chemical Engineering.