1. **Equation (3.37) (p 52):**
The last term within brackets on the right hand side should read \((7\cos^2 \phi - 3) \) instead of \((7\cos^2 \phi - 1) \).

2. **Exercise 4.8 (p 114):**
The **correct** second and third equations in the problem’s statement should be the following:

\[
\dot{v} = \frac{f_x - D}{m} - g \sin \phi \\
\dot{\phi} = \frac{L}{mv} - \left(\frac{g}{v} - \frac{v \cos \phi}{R_0 + h} \right)
\]

3. **Exercise 7.7 (p 192):**
The **correct** equation this exercise statement is the following:

\[
C = \frac{1}{2} v^2 - 2\omega \cdot (R \times v) - \frac{(1 - \mu)}{r_1} - \frac{\mu}{r_2}
\]

4. **Equation (10.6) (p 240):** The “= (is equal to)” sign is missing at the end of the equation.

5. **Equation (9.14) (p 225):** The right-hand side should be multiplied by the term \(d\theta \).

6. **Equation (9.15) (p 225):** The expression in the first pair of square brackets should read \(1 + \frac{a(h-h_i)}{T_i} \).

7. **Equation (10.10) (p 241):** The last term should read \(\rho v (\nabla \cdot v) \) instead of \(\rho v (\nabla \cdot v) \).

8. **Equation (10.13) (p 244):** The last term on the left-hand side should read \(\rho v (\nabla \cdot v) \) instead of \(\rho v (\nabla \cdot v) \).

9. **Figure 12.4 (p 292):** The figure labels “\(x_y \)” and “\(z_y \)” should read “\(x_v \)” and “\(z_v \)” respectively.

10. **MATLAB statement, line 19, p 402:** The **correct** statement is the following:

\[
>> [t,x] = ode45(@spacevscmg,[0 40],[0 0 0 0.1 -0.2 0.5 q0]')
\]

11. **Equation (13.170) (p 441):** The expression on the right-hand side of the equation should be divided by the term \(v^\infty \). The correct equation should thus read \(\zeta = \frac{C_{n_s}}{v^\infty} \sqrt{\frac{qSb^3}{32J_{zz}C_{n_b}}} \).

12. **Equation (14.28) (p 466):** The expression under square root should read \(\zeta^2 - 1 \). The correct equation should thus read \(s_{1,2} = -\omega_{n_s} \pm \omega_{n_s} \sqrt{\zeta^2 - 1} \).

13. **Last line, p 466, and fourth line, p 467:** The phrase should read \(0 \leq \zeta < 1 \) instead of \(0 \geq \zeta < 1 \).
Atmospheric and Space Flight Dynamics
Modeling and Simulation with MATLAB® and Simulink®
Tewari, A.
2007, XX, 556 p., Hardcover
ISBN: 978-0-8176-4437-6
A product of Birkhäuser Basel