Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physical sciences and engineering. The world’s leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters comprising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of physical and technical information.

The volumes are designed to be useful as readable desk reference books to give a fast and comprehensive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibliographies. References to extensive sources are provided.
In a January 2000 speech at the California Institute of Technology, former President W.J. Clinton talked about the exciting promise of nanotechnology and the importance of expanding research in nanoscale science and engineering and, more broadly, in the physical sciences. Later that month, he announced in his State of the Union Address an ambitious US$ 497 million federal, multiagency national nanotechnology initiative (NNI) in the fiscal year 2001 budget; and he made the NNI a top science and technology priority within a budget that emphasized increased investment in US scientific research. With strong bipartisan support in Congress, most of this request was appropriated, and the NNI was born. Often, federal budget initiatives only last a year or so. It is most encouraging that the NNI has remained a high priority of the G.W. Bush Administration and Congress, reflecting enormous progress in the field and continued strong interest and support by industry.

Nanotechnology is the ability to manipulate individual atoms and molecules to produce nanostructured materials and submicron objects that have applications in the real world. Nanotechnology involves the production and application of physical, chemical and biological systems at scales ranging from individual atoms or molecules to about 100 nm, as well as the integration of the resulting nanostructures into larger systems. Nanotechnology is likely to have a profound impact on our economy and society in the early 21st century, perhaps comparable to that of information technology or cellular and molecular biology. Science and engineering research in nanotechnology promises breakthroughs in areas such as materials and manufacturing, electronics, medicine and healthcare, energy and the environment, biotechnology, information technology and national security. Clinical trials are already underway for nanomaterials that offer the promise of cures for certain cancers. It is widely felt that nanotechnology will be the next industrial revolution.

Nanometer-scale features are built up from their elemental constituents. Micro- and nanosystems components are fabricated using batch-processing techniques that are compatible with integrated circuits and range in size from micro- to nanometers. Micro- and nanosystems include micro/nanoelectro-mechanical systems (MEMS/NEMS), micromechatronics, optoelectronics, microfluidics and systems integration. These systems can sense, control, and activate on the micro/nanoscale and can function individually or in arrays to generate effects on the macroscale. Due to the enabling nature of these systems and the significant impact they can have on both the commercial and defense applications, industry as well as the federal government have taken special interest in seeing growth nurtured in this field. Micro- and nanosystems are the next logical step in the silicon revolution.

The discovery of novel materials, processes, and phenomena at the nanoscale and the development of new experimental and theoretical techniques for research provide fresh opportunities for the development of innovative nanosystems and nanostructured materials. There is an increasing need for a multidisciplinary, systems-oriented approach to manufacturing micro/nanodevices which function reliably. This can only be achieved through the cross-fertilization of ideas from different disciplines and the systematic flow of information and people among research groups.

Nanotechnology is a broad, highly interdisciplinary, and still evolving field. Covering even the most important aspects of nanotechnology in a single book that reaches readers ranging from students to active researchers in academia and industry is an enormous challenge. To prepare such a wide-ranging book on nanotechnology, Prof. Bhushan has harnessed his own knowledge and experience, gained in several industries and universities, and has assembled internationally recognized authors from four continents to write chapters covering a wide array of nanotechnology topics, including the latest advances. The authors come from both academia and industry. The topics include major advances in many fields where nanoscale science and engineering is being pursued and illustrate how the field of nanotechnology has continued to emerge and blossom. Given the accelerating pace of discovery and applications in nanotechnology, it is a challenge to cap-
ture it all in one volume. As in earlier editions, professor Bhushan does an admirable job.

Professor Bharat Bhushan’s comprehensive book is intended to serve both as a textbook for university courses as well as a reference for researchers. The first and second editions were timely additions to the literature on nanotechnology and stimulated further interest in this important new field, while serving as invaluable resources to members of the international scientific and industrial community. The increasing demand for up-to-date information on this fast moving field led to this third edition. It is increasingly important that scientists and engineers, whatever their specialty, have a solid grounding in the fundamentals and potential applications of nanotechnology. This third edition addresses that need by giving particular attention to the widening audience of readers. It also includes a discussion of the social, ethical and political issues that tend to surround any emerging technology.

The editor and his team are to be warmly congratulated for bringing together this exclusive, timely, and useful nanotechnology handbook.
Foreword by James R. Heath

Nanotechnology has become an increasingly popular buzzword over the past five years or so, a trend that has been fueled by a global set of publicly funded nanotechnology initiatives. Even as researchers have been struggling to demonstrate some of the most fundamental and simple aspects of this field, the term nanotechnology has entered into the public consciousness through articles in the popular press and popular fiction. As a consequence, the expectations of the public are high for nanotechnology, even while the actual public definition of nanotechnology remains a bit fuzzy.

Why shouldn’t those expectations be high? The late 1990s witnessed a major information technology (IT) revolution and a minor biotechnology revolution. The IT revolution impacted virtually every aspect of life in the western world. I am sitting on an airplane at 30,000 feet at the moment, working on my laptop, as are about half of the other passengers on this plane. The plane itself is riddled with computational and communications equipment. As soon as we land, many of us will pull out cell phones, others will check e-mail via wireless modem, some will do both. This picture would be the same if I was landing in Los Angeles, Beijing, or Capetown. I will probably never actually print this text, but will instead submit it electronically. All of this was unthinkable a dozen years ago. It is therefore no wonder that the public expects marvelous things to happen quickly. However, the science that laid the groundwork for the IT revolution dates back 60 years or more, with its origins in fundamental solid-state physics.

By contrast, the biotech revolution was relatively minor and, at least to date, not particularly effective. The major diseases that plagued mankind a quarter century ago are still here. In some third-world countries, the average lifespan of individuals has actually decreased from where it was a full century ago. While the costs of electronics technologies have plummeted, health care costs have continued to rise. The biotech revolution may have a profound impact, but the task at hand is substantially more difficult than what was required for the IT revolution. In effect, the IT revolution was based on the advanced engineering of two-dimensional digital circuits constructed from relatively simple components—extended solids. The biotech revolution is really dependent upon the ability to reverse engineer three-dimensional analog systems constructed from quite complex components—proteins. Given that the basic science behind biotech is substantially younger than the science that has supported IT, it is perhaps not surprising that the biotech revolution has not really been a proper revolution yet, and it likely needs at least another decade or so to come into fruition.

Where does nanotechnology fit into this picture? In many ways, nanotechnology depends upon the ability to engineer two- and three-dimensional systems constructed from complex components such as macromolecules, biomolecules, nanostructured solids, etc. Furthermore, in terms of patents, publications, and other metrics that can be used to gauge the birth and evolution of a field, nanotech lags some 15–20 years behind biotech. Thus, now is the time that the fundamental science behind nanotechnology is being explored and developed. Nevertheless, progress with that science is moving forward at a dramatic pace. If the scientific community can keep up this pace and if the public sector will continue to support this science, then it is possible, and even perhaps likely, that in 20 years we may be speaking of the nanotech revolution.

The first edition of Springer Handbook of Nanotechnology was timely to assemble chapters in the broad field of nanotechnology. Given the fact that the second edition was in press one year after the publication of the first edition in April 2004, it is clear that the handbook has shown to be a valuable reference for experienced researchers as well as for a novice in the field. The third edition has one Part added and an expanded scope should have a wider appeal.
Preface to the 3rd Edition

On December 29, 1959 at the California Institute of Technology, Nobel Laureate Richard P. Feynman gave a talk at the Annual meeting of the American Physical Society that has become one of the 20th century classic science lectures, titled *There’s Plenty of Room at the Bottom*. He presented a technological vision of extreme miniaturization in 1959, several years before the word *chip* became part of the lexicon. He talked about the problem of manipulating and controlling things on a small scale. Extrapolating from known physical laws, Feynman envisioned a technology using the ultimate toolbox of nature, building nanoobjects atom by atom or molecule by molecule. Since the 1980s, many inventions and discoveries in fabrication of nanoobjects have been testament to his vision. In recognition of this reality, National Science and Technology Council (NSTC) of the White House created the Interagency Working Group on Nanoscience, Engineering and Technology (IWGN) in 1998. In a January 2000 speech at the same institute, former President W.J. Clinton talked about the exciting promise of nanotechnology and the importance of expanding research in nanoscale science and technology, more broadly. Later that month, he announced in his State of the Union Address an ambitious US$ 497 million federal, multi-agency national nanotechnology initiative (NNI) in the fiscal year 2001 budget, and made the NNI a top science and technology priority. The objective of this initiative was to form a broad-based coalition in which the academe, the private sector, and local, state, and federal governments work together to push the envelop of nanoscience and nanoengineering to reap nanotechnology’s potential social and economic benefits.

The funding in the US has continued to increase. In January 2003, the US senate introduced a bill to establish a National Nanotechnology Program. On December 3, 2003, President George W. Bush signed into law the 21st Century Nanotechnology Research and Development Act. The legislation put into law programs and activities supported by the National Nanotechnology Initiative. The bill gave nanotechnology a permanent home in the federal government and authorized US$ 3.7 billion to be spent in the four year period beginning in October 2005, for nanotechnology initiatives at five federal agencies. The funds would provide grants to researchers, coordinate R&D across five federal agencies (National Science Foundation (NSF), Department of Energy (DOE), NASA, National Institute of Standards and Technology (NIST), and Environmental Protection Agency (EPA)), establish interdisciplinary research centers, and accelerate technology transfer into the private sector. In addition, Department of Defense (DOD), Homeland Security, Agriculture and Justice as well as the National Institutes of Health (NIH) also fund large R&D activities. They currently account for more than one-third of the federal budget for nanotechnology.

European Union (EU) made nanosciences and nanotechnologies a priority in Sixth Framework Program (FP6) in 2002 for a period of 2003–2006. They had dedicated small funds in FP4 and FP5 before. FP6 was tailored to help better structure European research and to cope with the strategic objectives set out in Lisbon in 2000. Japan identified nanotechnology as one of its main research priorities in 2001. The funding levels increases sharply from US$400 million in 2001 to around US$950 million in 2004. In 2003, South Korea embarked upon a ten-year program with around US$ 2 billion of public funding, and Taiwan has committed around US$ 600 million of public funding over six years. Singapore and China are also investing on a large scale. Russia is well funded as well.

Nanotechnology literally means any technology done on a nanoscale that has applications in the real world. Nanotechnology encompasses production and application of physical, chemical and biological systems at scales, ranging from individual atoms or molecules to submicron dimensions, as well as the integration of the resulting nanostructures into larger systems. Nanotechnology is likely to have a profound impact on our economy and society in the early 21st century, comparable to that of semiconductor technology, information technology, or cellular and molecular biology. Science and technology research in nanotechnology promises breakthroughs in areas such as materials and manufacturing, nanoelectronics, medicine and healthcare, energy, biotechnology, information technology and national security. It is widely felt that nanotechnology will be the next industrial revolution.

There is an increasing need for a multidisciplinary, system-oriented approach to design and manufactur-
ing of micro/nanodevices which function reliably. This can only be achieved through the cross-fertilization of ideas from different disciplines and the systematic flow of information and people among research groups. Reliability is a critical technology for many micro- and nanosystems and nanostructured materials. A broad based handbook was needed, and the first edition of Springer Handbook of Nanotechnology was published in April 2004. It presented an overview of nanomaterial synthesis, micro/nanofabrication, micro- and nanocomponents and systems, scanning probe microscopy, reliability issues (including nanotribology and nanomechanics) for nanotechnology, and industrial applications. When the handbook went for sale in Europe, it was sold out in ten days. Reviews on the handbook were very flattering.

Given the explosive growth in nanoscience and nanotechnology, the publisher and the editor decided to develop a second edition after merely six months of publication of the first edition. The second edition (2007) came out in December 2006. The publisher and the editor again decided to develop a third edition after six month of publication of the second edition. This edition of the handbook integrates the knowledge from nanostructures, fabrication, materials science, devices, and reliability point of view. It covers various industrial applications. It also addresses social, ethical, and political issues. Given the significant interest in biomedical applications, and biomimetics a number of additional chapters in this arena have been added. The third edition consists of 53 chapters (new 10, revised 28, and as is 15). The chapters have been written by 139 internationally recognized experts in the field, from academia, national research labs, and industry, and from all over the world.

This handbook is intended for three types of readers: graduate students of nanotechnology, researchers in academia and industry who are active or intend to become active in this field, and practicing engineers and scientists who have encountered a problem and hope to solve it as expeditiously as possible. The handbook should serve as an excellent text for one or two semester graduate courses in nanotechnology in mechanical engineering, materials science, applied physics, or applied chemistry.

We embarked on the development of third edition in June 2007, and we worked very hard to get all the chapters to the publisher in a record time of about 12 months. I wish to sincerely thank the authors for offering to write comprehensive chapters on a tight schedule. This is generally an added responsibility in the hectic work schedules of researchers today. I depended on a large number of reviewers who provided critical reviews. I would like to thank Dr. Phillip J. Bond, Chief of Staff and Under Secretary for Technology, US Department of Commerce, Washington, D.C. for suggestions for chapters as well as authors in the handbook. Last but not the least, I would like to thank my secretary Caterina Runyon-Spears for various administrative duties and her tireless efforts are highly appreciated.

I hope that this handbook will stimulate further interest in this important new field, and the readers of this handbook will find it useful.

February 2010

Bharat Bhushan

Editor
On 29 December 1959 at the California Institute of Technology, Nobel Laureate Richard P. Feynman gave at talk at the Annual meeting of the American Physical Society that has become one of the 20th century classic science lectures, titled “There’s Plenty of Room at the Bottom.” He presented a technological vision of extreme miniaturization in 1959, several years before the word “chip” became part of the lexicon. He talked about the problem of manipulating and controlling things on a small scale. Extrapolating from known physical laws, Feynman envisioned a technology using the ultimate toolbox of nature, building nanoobjects atom by atom or molecule by molecule. Since the 1980s, many inventions and discoveries in the fabrication of nanoobjects have been a testament to his vision. In recognition of this reality, the National Science and Technology Council (NSTC) of the White House created the Interagency Working Group on Nanoscience, Engineering and Technology (IWGN) in 1998. In a January 2000 speech at the same institute, former President W. J. Clinton talked about the exciting promise of “nanotechnology” and the importance of expanding research in nanoscale science and, more broadly, technology. Later that month, he announced in his State of the Union Address an ambitious $497 million federal, multiagency national nanotechnology initiative (NNI) in the fiscal year 2001 budget, and made the NNI a top science and technology priority. The objective of this initiative was to form a broad-based coalition in which the academe, the private sector, and local, state, and federal governments work together to push the envelope of nanoscience and nanoengineering to reap nanotechnology’s potential social and economic benefits.

The funding in the U.S. has continued to increase. In January 2003, the U. S. senate introduced a bill to establish a National Nanotechnology Program. On 3 December 2003, President George W. Bush signed into law the 21st Century Nanotechnology Research and Development Act. The legislation put into law programs and activities supported by the National Nanotechnology Initiative. The bill gave nanotechnology a permanent home in the federal government and authorized $3.7 billion to be spent in the four year period beginning in October 2005, for nanotechnology initiatives at five federal agencies. The funds would provide grants to researchers, coordinate R&D across five federal agencies (National Science Foundation (NSF), Department of Energy (DOE), NASA, National Institute of Standards and Technology (NIST), and Environmental Protection Agency (EPA)), establish interdisciplinary research centers, and accelerate technology transfer into the private sector. In addition, Department of Defense (DOD), Homeland Security, Agriculture and Justice as well as the National Institutes of Health (NIH) would also fund large R&D activities. They currently account for more than one-third of the federal budget for nanotechnology.

The European Union made nanosciences and nanotechnologies a priority in the Sixth Framework Program (FP6) in 2002 for the period of 2003-2006. They had dedicated small funds in FP4 and FP5 before. FP6 was tailored to help better structure European research and to cope with the strategic objectives set out in Lisbon in 2000. Japan identified nanotechnology as one of its main research priorities in 2001. The funding levels increased sharply from $400 million in 2001 to around $950 million in 2004. In 2003, South Korea embarked upon a ten-year program with around $2 billion of public funding, and Taiwan has committed around $600 million of public funding over six years. Singapore and China are also investing on a large scale. Russia is well funded as well.

Nanotechnology literally means any technology done on a nanoscale that has applications in the real world. Nanotechnology encompasses production and application of physical, chemical and biological systems at scales, ranging from individual atoms or molecules to submicron dimensions, as well as the integration of the resulting nanostructures into larger systems. Nanotechnology is likely to have a profound impact on our economy and society in the early 21st century, comparable to that of semiconductor technology, information technology, or cellular and molecular biology. Science and technology research in nanotechnology promises breakthroughs in areas such as materials and manufacturing, nanoelectronics, medicine and healthcare, energy, biotechnology, information technology and national security. It is widely felt that nanotechnology will be the next industrial revolution.

There is an increasing need for a multidisciplinary, system-oriented approach to design and manufactur-
ing of micro/nanodevices that function reliably. This can only be achieved through the cross-fertilization of ideas from different disciplines and the systematic flow of information and people among research groups. Reliability is a critical technology for many micro- and nanosystems and nanostructured materials. A broad-based handbook was needed, and thus the first edition of Springer Handbook of Nanotechnology was published in April 2004. It presented an overview of nanomaterial synthesis, micro/nanofabrication, micro- and nanocomponents and systems, scanning probe microscopy, reliability issues (including nanotribology and nanomechanics) for nanotechnology, and industrial applications. When the handbook went for sale in Europe, it sold out in ten days. Reviews on the handbook were very flattering.

Given the explosive growth in nanoscience and nanotechnology, the publisher and the editor decided to develop a second edition merely six months after publication of the first edition. This edition of the handbook integrates the knowledge from the nanostructure, fabrication, materials science, devices, and reliability point of view. It covers various industrial applications. It also addresses social, ethical, and political issues. Given the significant interest in biomedical applications, a number of chapters in this arena have been added. The second edition consists of 59 chapters (new: 23; revised: 27; unchanged: 9). The chapters have been written by 154 internationally recognized experts in the field, from academia, national research labs, and industry.

This book is intended for three types of readers: graduate students of nanotechnology, researchers in academia and industry who are active or intend to become active in this field, and practicing engineers and scientists who have encountered a problem and hope to solve it as expeditiously as possible. The handbook should serve as an excellent text for one or two semester graduate courses in nanotechnology in mechanical engineering, materials science, applied physics, or applied chemistry.

We embarked on the development of the second edition in October 2004, and we worked very hard to get all the chapters to the publisher in a record time of about 7 months. I wish to sincerely thank the authors for offering to write comprehensive chapters on a tight schedule. This is generally an added responsibility to the hectic work schedules of researchers today. I depended on a large number of reviewers who provided critical reviews. I would like to thank Dr. Phillip J. Bond, Chief of Staff and Under Secretary for Technology, US Department of Commerce, Washington, D.C. for chapter suggestions as well as authors in the handbook. I would also like to thank my colleague, Dr. Zhenhua Tao, whose efforts during the preparation of this handbook were very useful. Last but not the least, I would like to thank my secretary Caterina Runyon-Spears for various administrative duties; her tireless efforts are highly appreciated.

I hope that this handbook will stimulate further interest in this important new field, and the readers of this handbook will find it useful.

May 2005

Bharat Bhushan
Editor
Preface to the 1st Edition

On December 29, 1959 at the California Institute of Technology, Nobel Laureate Richard P. Feynman gave a talk at the Annual meeting of the American Physical Society that has become one classic science lecture of the 20th century, titled “There’s Plenty of Room at the Bottom.” He presented a technological vision of extreme miniaturization in 1959, several years before the word “chip” became part of the lexicon. He talked about the problem of manipulating and controlling things on a small scale. Extrapolating from known physical laws, Feynman envisioned a technology using the ultimate toolbox of nature, building nanoobjects atom by atom or molecule by molecule. Since the 1980s, many inventions and discoveries in fabrication of nanoobjects have been a testament to his vision. In recognition of this reality, in a January 2000 speech at the same institute, former President W. J. Clinton talked about the exciting promise of “nanotechnology” and the importance of expanding research in nanoscale science and engineering. Later that month, he announced in his State of the Union Address an ambitious $497 million federal, multi-agency national nanotechnology initiative (NNI) in the fiscal year 2001 budget, and made the NNI a top science and technology priority. Nanotechnology literally means any technology done on a nanoscale that has applications in the real world. Nanotechnology encompasses production and application of physical, chemical and biological systems at size scales, ranging from individual atoms or molecules to submicron dimensions as well as the integration of the resulting nanostructures into larger systems. Nanofabrication methods include the manipulation or self-assembly of individual atoms, molecules, or molecular structures to produce nanostructured materials and sub-micron devices. Micro- and nanosystems components are fabricated using top-down lithographic and nonlithographic fabrication techniques. Nanotechnology will have a profound impact on our economy and society in the early 21st century, comparable to that of semiconductor technology, information technology, or advances in cellular and molecular biology. The research and development in nanotechnology will lead to potential breakthroughs in areas such as materials and manufacturing, nanoelectronics, medicine and healthcare, energy, biotechnology, information technology and national security. It is widely felt that nanotechnology will lead to the next industrial revolution.

Reliability is a critical technology for many micro- and nanosystems and nanostructured materials. No book exists on this emerging field. A broad based handbook is needed. The purpose of this handbook is to present an overview of nanomaterial synthesis, micro/nanofabrication, micro- and nanocomponents and systems, reliability issues (including nanotribology and nanomechanics) for nanotechnology, and industrial applications. The chapters have been written by internationally recognized experts in the field, from academia, national research labs and industry from all over the world.

The handbook integrates knowledge from the fabrication, mechanics, materials science and reliability points of view. This book is intended for three types of readers: graduate students of nanotechnology, researchers in academia and industry who are active or intend to become active in this field, and practicing engineers and scientists who have encountered a problem and hope to solve it as expeditiously as possible. The handbook should serve as an excellent text for one or two semester graduate courses in nanotechnology in mechanical engineering, materials science, applied physics, or applied chemistry.

We embarked on this project in February 2002, and we worked very hard to get all the chapters to the publisher in a record time of about 1 year. I wish to sincerely thank the authors for offering to write comprehensive chapters on a tight schedule. This is generally an added responsibility in the hectic work schedules of researchers today. I depended on a large number of reviewers who provided critical reviews. I would like to thank Dr. Phillip J. Bond, Chief of Staff and Under Secretary for Technology, US Department of Commerce, Washington, D.C. for suggestions for chapters as well as authors in the handbook. I would also like to thank my colleague, Dr. Huiwen Liu, whose efforts during the preparation of this handbook were very useful.

I hope that this handbook will stimulate further interest in this important new field, and the readers of this handbook will find it useful.

September 2003

Bharat Bhushan
Editor
Editors Vita

Dr. Bharat Bhushan received an M.S. in mechanical engineering from the Massachusetts Institute of Technology in 1971, an M.S. in mechanics and a Ph.D. in mechanical engineering from the University of Colorado at Boulder in 1973 and 1976, respectively, an MBA from Rensselaer Polytechnic Institute at Troy, NY in 1980, Doctor Technicae from the University of Trondheim at Trondheim, Norway in 1990, a Doctor of Technical Sciences from the Warsaw University of Technology at Warsaw, Poland in 1996, and Doctor Honouris Causa from the National Academy of Sciences at Gomel, Belarus in 2000. He is a registered professional engineer. He is presently an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the College of Engineering, and the Director of the Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB²) at the Ohio State University, Columbus, Ohio. His research interests include fundamental studies with a focus on scanning probe techniques in the interdisciplinary areas of bio/nanotribology, bio/nanomechanics and bio/nanomaterials characterization, and applications to bio/nanotechnology and biomimetics. He is an internationally recognized expert of bio/nanotribology and bio/nanomechanics using scanning probe microscopy, and is one of the most prolific authors. He is considered by some a pioneer of the tribology and mechanics of magnetic storage devices. He has authored 6 scientific books, more than 90 handbook chapters, more than 700 scientific papers (h factor – 45+; ISI Highly Cited in Materials Science, since 2007), and more than 60 technical reports, edited more than 45 books, and holds 17 US and foreign patents. He is co-editor of Springer NanoScience and Technology Series and co-editor of Microsystem Technologies. He has given more than 400 invited presentations on six continents and more than 140 keynote/plenary addresses at major international conferences.

Dr. Bhushan is an accomplished organizer. He organized the first symposium on Tribology and Mechanics of Magnetic Storage Systems in 1984 and the first international symposium on Advances in Information Storage Systems in 1990, both of which are now held annually. He is the founder of an ASME Information Storage and Processing Systems Division founded in 1993 and served as the founding chair during 1993–1998. His biography has been listed in over two dozen Who’s Who books including Who’s Who in the World and has received more than two dozen awards for his contributions to science and technology from professional societies, industry, and US government agencies. He is also the recipient of various international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, and the Fulbright Senior Scholar Award. He is a foreign member of the International Academy of Engineering (Russia), Byelorussian Academy of Engineering and Technology and the Academy of Triboenineering of Ukraine, an honorary member of the Society of Tribologists of Belarus, a fellow of ASME, IEEE, STLE, and the New York Academy of Sciences, and a member of ASEE, Sigma Xi and Tau Beta Pi.

Dr. Bhushan has previously worked for the R&D Division of Mechanical Technology Inc., Latham, NY; the Technology Services Division of SKF Industries Inc., King of Prussia, PA; the General Products Division Laboratory of IBM Corporation, Tucson, AZ; and the Almaden Research Center of IBM Corporation, San Jose, CA. He has held visiting professor appointments at University of California at Berkeley, University of Cambridge, UK, Technical University Vienna, Austria, University of Paris, Orsay, ETH Zurich and EPFL Lausanne.
List of Authors

Chong H. Ahn
University of Cincinnati
Department of Electrical
and Computer Engineering
Cincinnati, OH 45221, USA
e-mail: chong.ahn@uc.edu

Boris Anczykowski
nanoAnalytics GmbH
Münster, Germany
e-mail: anczykowski@nanoanalytics.com

W. Robert Ashurst
Auburn University
Department of Chemical Engineering
Auburn, AL 36849, USA
e-mail: ashurst@auburn.edu

Massood Z. Atashbar
Western Michigan University
Department of Electrical
and Computer Engineering
Kalamazoo, MI 49008–5329, USA
e-mail: massood.atashbar@wmich.edu

Wolfgang Bacsa
University of Toulouse III (Paul Sabatier)
Laboratoire de Physique des Solides (LPST),
UMR 5477 CNRS
Toulouse, France
e-mail: bacsa@ramansco.ups-tlse.fr;
bacsa@lpst.ups-tlse.fr

Kelly Bailey
University of Adelaide
CSIRO Human Nutrition
Adelaide SA 5005, Australia
e-mail: kelly.bailey@csiro.au

William Sims Bainbridge
National Science Foundation
Division of Information, Science and Engineering
Arlington, VA, USA
e-mail: wsbainbridge@yahoo.com

Antonio Baldi
Institut de Microelectronica de Barcelona (IMB)
Centro National Microelectrónica (CNM-CSIC)
Barcelona, Spain
e-mail: antoni.baldi@cnm.es

Wilhelm Barthlott
University of Bonn
Nees Institute for Biodiversity of Plants
Meckenheimer Allee 170
53115 Bonn, Germany
e-mail: barthlott@uni-bonn.de

Roland Bennewitz
INM – Leibniz Institute for New Materials
66123 Saarbrücken, Germany
e-mail: roland.bennewitz@inm-gmbh.de

Bharat Bhushan
Ohio State University
Nanoprobe Laboratory for Bio- and
Nanotechnology and Biomimetics (NLB²)
201 W. 19th Avenue
Columbus, OH 43210–1142, USA
e-mail: bhushan.2@osu.edu

Gerd K. Binnig
Definiens AG
Trappentreustr. 1
80339 Munich, Germany
e-mail: gbinnig@definiens.com

Marcie R. Black
Bandgap Engineering Inc.
1344 Main St.
Waltham, MA 02451, USA
e-mail: marcie@alum.mit.edu;
marcie@bandgap.com

Donald W. Brenner
Department of Materials Science and Engineering
Raleigh, NC, USA
e-mail: brenner@ncsu.edu
Jean-Marc Broto
Institut National des Sciences Appliquées of Toulouse
Laboratoire National des Champs Magnétiques Pulsés (LNCMP)
Toulouse, France
e-mail: broto@lncmp.fr

Guozhong Cao
University of Washington
Dept. of Materials Science and Engineering
302M Roberts Hall
Seattle, WA 98195–2120, USA
e-mail: gzcao@u.washington.edu

Edin (I-Chen) Chen
National Central University
Institute of Materials Science and Engineering
Department of Mechanical Engineering
Chung-li, 320, Taiwan
e-mail: ichen@ncu.edu.tw

Yu-Ting Cheng
National Chiao Tung University
Department of Electronics Engineering & Institute of Electronics
1001, Ta–Hsueh Rd.
Hsinchu, 300, Taiwan, R.O.C.
e-mail: ytccheng@mail.nctu.edu.tw

Giovanni Cherubini
IBM Zurich Research Laboratory
Tape Technologies
8803 Rüschlikon, Switzerland
e-mail: cbi@zurich.ibm.com

Mu Chiao
Department of Mechanical Engineering
6250 Applied Science Lane
Vancouver, BC V6T 1Z4, Canada
e-mail: muchiao@mech.ubc.ca

Jin-Woo Choi
Louisiana State University
Department of Electrical and Computer Engineering
Baton Rouge, LA 70803, USA
e-mail: choi@ece.lsu.edu

Tamara H. Cooper
University of Adelaide
CSIRO Human Nutrition
Adelaide SA 5005, Australia
e-mail: tamara.cooper@csiro.au

Alex D. Corwin
GE Global Research
1 Research Circle
Niskayuna, NY 12309, USA
e-mail: corwin@ge.com

Maarten P. de Boer
Carnegie Mellon University
Department of Mechanical Engineering
5000 Forbes Avenue
Pittsburgh, PA 15213, USA
e-mail: mpdebo@andrew.cmu.edu

Dietrich Dehlinger
Lawrence Livermore National Laboratory Engineering
Livermore, CA 94551, USA
e-mail: dehlinger1@llnl.gov

Frank W. DelRio
National Institute of Standards and Technology
100 Bureau Drive, Stop 8520
Gaithersburg, MD 20899–8520, USA
e-mail: frank.delrio@nist.gov

Michel Despont
IBM Zurich Research Laboratory
Micro- and Nanofabrication
8803 Rüschlikon, Switzerland
e-mail: dpt@zurich.ibm.com

Lixin Dong
Michigan State University
Electrical and Computer Engineering
2120 Engineering Building
East Lansing, MI 48824–1226, USA
e-mail: lidong@egr.msu.edu

Gene Dresselhaus
Massachusetts Institute of Technology
Francis Bitter Magnet Laboratory
Cambridge, MA 02139, USA
e-mail: gene@mgm.mit.edu
Mildred S. Dresselhaus
Massachusetts Institute of Technology
Department of Electrical Engineering
and Computer Science
Department of Physics
Cambridge, MA, USA
e-mail: millie@mgm.mit.edu

Urs T. Dürrig
IBM Zurich Research Laboratory
Micro-/Nanofabrication
8803 Rüschlikon, Switzerland
e-mail: drg@zurich.ibm.com

Andreas Ebner
Johannes Kepler University Linz
Institute for Biophysics
Altenberger Str. 69
4040 Linz, Austria
e-mail: andreas.ebner@jku.at

Evangelos Eleftheriou
IBM Zurich Research Laboratory
8803 Rüschlikon, Switzerland
e-mail: ele@zurich.ibm.com

Emmanuel Flahaut
Université Paul Sabatier
CIRIMAT, Centre Interuniversitaire de Recherche
et d’Ingénierie des Matériaux, UMR 5085 CNRS
118 Route de Narbonne
31062 Toulouse, France
e-mail: flahaut@chimie.ups-tlse.fr

Anatol Fritsch
University of Leipzig
Institute of Experimental Physics I
Division of Soft Matter Physics
Linnéstr. 5
04103 Leipzig, Germany
e-mail: anatol.fritsch@uni-leipzig.de

Harald Fuchs
Universität Münster
Physikalisches Institut
Münster, Germany
e-mail: fuchsh@uni-muenster.de

Christoph Gerber
University of Basel
Institute of Physics
National Competence Center for Research
in Nanoscale Science (NCCR) Basel
Klingelbergstr. 82
4056 Basel, Switzerland
e-mail: christoph.gerber@unibas.ch

Franz J. Giessibl
Universität Regensburg
Institute of Experimental and Applied Physics
Universitätsstr. 31
93053 Regensburg, Germany
e-mail: franz.giessibl@physik.uni-regensburg.de

Enrico Gnecco
University of Basel
National Center of Competence in Research
Department of Physics
Klingelbergstr. 82
4056 Basel, Switzerland
e-mail: enrico.gnecco@unibas.ch

Stanislav N. Gorb
Max Planck Institut für Metallforschung
Evolutionary Biomaterials Group
Heisenbergstr. 3
70569 Stuttgart, Germany
e-mail: s.gorb@mf.mpg.de

Hermann Gruber
University of Linz
Institute of Biophysics
Altenberger Str. 69
4040 Linz, Austria
e-mail: hermann.gruber@jku.at

Jason Hafner
Rice University
Department of Physics and Astronomy
Houston, TX 77251, USA
e-mail: hafner@rice.edu

Judith A. Harrison
U.S. Naval Academy
Chemistry Department
572 Holloway Road
Annapolis, MD 21402-5026, USA
e-mail: jah@usna.edu
List of Authors

Martin Hegner
CRANN – The Naughton Institute
Trinity College, University of Dublin
School of Physics
Dublin, 2, Ireland
e-mail: martin.hegner@tcd.ie

Thomas Helbling
ETH Zurich
Micro and Nanosystems
Department of Mechanical
and Process Engineering
8092 Zurich, Switzerland
e-mail: thomas.helbling@micro.mavt.ethz.ch

Michael J. Heller
University of California San Diego
Department of Bioengineering
Dept. of Electrical and Computer Engineering
La Jolla, CA, USA
e-mail: mjheller@ucsd.edu

Seong-Jun Heo
Lam Research Corp.
4650 Cushing Parkway
Fremont, CA 94538, USA
e-mail: seongjun.heo@lamrc.com

Christofer Hierold
ETH Zurich
Micro and Nanosystems
Department of Mechanical
and Process Engineering
8092 Zurich, Switzerland
e-mail: christofer.hierold@micro.mavt.ethz.ch

Peter Hinterdorfer
University of Linz
Institute for Biophysics
Altenberger Str. 69
4040 Linz, Austria
e-mail: peter.hinterdorfer@jku.at

Dalibor Hodko
Nanogen, Inc.
10498 Pacific Center Court
San Diego, CA 92121, USA
e-mail: dhodko@nanogen.com

Hendrik Hölscher
Forschungszentrum Karlsruhe
Institute of Microstructure Technology
Linnéstr. 5
76021 Karlsruhe, Germany
e-mail: hendrik.hoelscher@imt.fzk.de

Hirotaka Hosoi
Hokkaido University
Creative Research Initiative Sousei
Kita 11, Nishi 10, Kita-ku
Sapporo, Japan
e-mail: hosoi@cris.hokudai.ac.jp

Katrin Hübner
Staatliche Fachoberhochschule Neu-Ulm
89231 Neu-Ulm, Germany
e-mail: katrin.huebner1@web.de

Douglas L. Irving
North Carolina State University
Materials Science and Engineering
Raleigh, NC 27695–7907, USA
e-mail: doug_irving@ncsu.edu

Jacob N. Israelachvili
University of California
Department of Chemical Engineering
and Materials Department
Santa Barbara, CA 93106–5080, USA
e-mail: jacob@engineering.ucsb.edu

Guangyao Jia
University of California, Irvine
Department of Mechanical
and Aerospace Engineering
Irvine, CA, USA
e-mail: gjia@uci.edu

Sungho Jin
University of California, San Diego
Department of Mechanical
and Aerospace Engineering
9500 Gilman Drive
La Jolla, CA 92093–0411, USA
e-mail: jin@ucsd.edu

Anne Jourdain
Interuniversity Microelectronics Center (IMEC)
Leuven, Belgium
e-mail: jourdain@imec.be
Yong Chae Jung
Samsung Electronics C., Ltd.
Senior Engineer Process Development Team
San #16 Banwol-Dong, Hwasung-City
Gyeonggi-Do 445-701, Korea
e-mail: yc423.jung@samsung.com

Harold Kahn
Case Western Reserve University
Department of Materials Science and Engineering
Cleveland, OH, USA
e-mail: kahn@cwru.edu

Roger Kamm
Massachusetts Institute of Technology
Department of Biological Engineering
77 Massachusetts Avenue
Cambridge, MA 02139, USA
e-mail: rdkamm@mit.edu

Ruti Kapon
Weizmann Institute of Science
Department of Biological Chemistry
Rehovot 76100, Israel
e-mail: ruti.kapon@weizmann.ac.il

Josef Käs
University of Leipzig
Institute of Experimental Physics I
Division of Soft Matter Physics
Linnéstr. 5
04103 Leipzig, Germany
e-mail: jkaes@physik.uni-leipzig.de

Horacio Kido
University of California at Irvine
Mechanical and Aerospace Engineering
Irvine, CA, USA
e-mail: hkido@uci.edu

Tobias Kießling
University of Leipzig
Institute of Experimental Physics I
Division of Soft Matter Physics
Linnéstr. 5
04103 Leipzig, Germany
e-mail: Tobias.Kiessling@uni-leipzig.de

Jitae Kim
University of California at Irvine
Department of Mechanical
and Aerospace Engineering
Irvine, CA, USA
e-mail: jitaekim@uci.edu

Jongbaeg Kim
Yonsei University
School of Mechanical Engineering
1st Engineering Bldg.
Seoul, 120-749, South Korea
e-mail: kimjb@yonsei.ac.kr

Nahui Kim
Samsung Advanced Institute of Technology
Research and Development
Seoul, South Korea
e-mail: nahui.kim@samsung.com

Kerstin Koch
Rhine-Waal University of Applied Science
Department of Life Science, Biology
and Nanobiotechnology
Landwehr 4
47533 Kleve, Germany
e-mail: kerstin.koch@hochschule.rhein-waal.de

Jing Kong
Massachusetts Institute of Technology
Department of Electrical Engineering
and Computer Science
Cambridge, MA, USA
e-mail: jingkong@mit.edu

Tobias Kraus
Leibniz-Institut für Neue Materialien gGmbH
Campus D2 2
66123 Saarbrücken, Germany
e-mail: tobias.kraus@inm-gmbh.de

Anders Kristensen
Technical University of Denmark
DTU Nanotech
2800 Kongens Lyngby, Denmark
e-mail: anders.kristensen@nanotech.dtu.dk
Ratnesh Lal
University of Chicago
Center for Nanomedicine
5841 S Maryland Av
Chicago, IL 60637, USA
e-mail: rlal@uchicago.edu

Jan Lammerding
Harvard Medical School
Brigham and Women’s Hospital
65 Landsdowne St
Cambridge, MA 02139, USA
e-mail: jlammerding@rics.bwh.harvard.edu

Hans Peter Lang
University of Basel
Institute of Physics, National Competence Center for Research in Nanoscale Science (NCCR) Basel
Klingelbergstr. 82
4056 Basel, Switzerland
e-mail: hans-peter.lang@unibas.ch

Carmen LaTorre
Owens Corning Science and Technology
Roofing and Asphalt
2790 Columbus Road
Granville, OH 43023, USA
e-mail: carmen.latorre@owenscorning.com

Christophe Laurent
Université Paul Sabatier
CIRIMAT UMR 5085 CNRS
118 Route de Narbonne
31062 Toulouse, France
e-mail: laurent@chimie.ups-tlse.fr

Abraham P. Lee
University of California Irvine
Department of Biomedical Engineering
Department of Mechanical and Aerospace Engineering
Irvine, CA 92697, USA
e-mail: aplee@uci.edu

Stephen C. Lee
Ohio State University
Biomedical Engineering Center
Columbus, OH 43210, USA
e-mail: lee@bme.ohio-state.edu

Wayne R. Leifert
Adelaide Business Centre
CSIRO Human Nutrition
Adelaide SA 5000, Australia
e-mail: wayne.leifert@csiro.au

Liwei Lin
UC Berkeley
Mechanical Engineering Department
5126 Etcheverry
Berkeley, CA 94720-1740, USA
e-mail: lwlin@me.berkeley.edu

Yu-Ming Lin
IBM T.J. Watson Research Center
Nanometer Scale Science & Technology
1101 Kitchawan Road
Yorktown Heights, NY 10598, USA
e-mail: yming@us.ibm.com

Marc J. Madou
University of California Irvine
Department of Mechanical and Aerospace and Biomedical Engineering
Irvine, CA, USA
e-mail: mmadou@uci.edu

Othmar Marti
Ulm University
Institute of Experimental Physics
Albert–Einstein–Allee 11
89069 Ulm, Germany
e-mail: othmar.marti@uni-ulm.de

Jack Martin
66 Summer Street
Foxborough, MA 02035, USA
e-mail: jack.martin@alumni.tufts.edu

Shinji Matsui
University of Hyogo
Laboratory of Advanced Science and Technology for Industry
Hyogo, Japan
e-mail: matsui@lasti.u-hyogo.ac.jp
Mehran Mehregany
Case Western Reserve University
Department of Electrical Engineering and Computer Science
Cleveland, OH 44106, USA
e-mail: mxm31@cwru.edu

Etienne Menard
Semprius, Inc.
4915 Prospectus Dr.
Durham, NC 27713, USA
e-mail: etienne.menard@semprius.com

Ernst Meyer
University of Basel
Institute of Physics
Basel, Switzerland
e-mail: ernst.meyer@unibas.ch

Robert Modliński
Baolab Microsystems
Terrassa 08220, Spain
e-mail: rmodlinski@gmx.com

Mohammad Mofrad
University of California, Berkeley
Department of Bioengineering
Berkeley, CA 94720, USA
e-mail: mofrad@berkeley.edu

Marc Monthioux
CEMES – UPR A-8011 CNRS
Carbones et Matériaux Carbonés, Carbons and Carbon-Containing Materials
29 Rue Jeanne Marvig
31055 Toulouse 4, France
e-mail: monthiou@cemes.fr

Markus Morgenstern
RWTH Aachen University
II. Institute of Physics B and JARA-FIT
52056 Aachen, Germany
e-mail: mmorgens@physik.rwth-aachen.de

Seizo Morita
Osaka University
Department of Electronic Engineering
Suita-City
Osaka, Japan
e-mail: smorita@ele.eng.osaka-u.ac.jp

Koichi Mukasa
Hokkaido University
Nanoelectronics Laboratory
Sapporo, Japan
e-mail: mukasa@nano.eng.hokudai.ac.jp

Bradley J. Nelson
Swiss Federal Institute of Technology (ETH)
Institute of Robotics and Intelligent Systems
8092 Zurich, Switzerland
e-mail: bnelson@ethz.ch

Michael Nosonovsky
University of Wisconsin–Milwaukee
Department of Mechanical Engineering
3200 N. Cramer St.
Milwaukee, WI 53211, USA
e-mail: nosonovs@uwm.edu

Hiroshi Onishi
Kanagawa Academy of Science and Technology
Surface Chemistry Laboratory
Kanagawa, Japan
e-mail: oni@net.ksp.or.jp

Alain Peigney
Centre Inter-universitaire de Recherche sur l’Industrialisation des Matériaux (CIRIMAT)
Toulouse 4, France
e-mail: peigney@chimie.ups-tlse.fr

Oliver Pfeiffer
Individual Computing GmbH
Ingelsteinweg 2d
4143 Dornach, Switzerland
e-mail: oliver.pfeiffer@gmail.com

Haralampos Pozidis
IBM Zurich Research Laboratory
Storage Technologies
Rüschlikon, Switzerland
e-mail: hap@zurich.ibm.com

Robert Puers
Katholieke Universiteit Leuven
ESAT/MICAS
Leuven, Belgium
e-mail: bob.puers@esat.kuleuven.ac.be
Calvin F. Quate
Stanford University
Edward L. Ginzton Laboratory
450 Via Palou
Stanford, CA 94305-4088, USA
e-mail: quate@stanford.edu

Oded Rabin
University of Maryland
Department of Materials Science and Engineering
College Park, MD, USA
e-mail: oded@umd.edu

Francisco M. Raymo
University of Miami
Department of Chemistry
1301 Memorial Drive
Coral Gables, FL 33146-0431, USA
e-mail: fraymo@miami.edu

Manitra Razafinimanana
University of Toulouse III (Paul Sabatier)
Centre de Physique des Plasmas
et leurs Applications (CPPAT)
Toulouse, France
e-mail: razafinimanana@cpat.ups-tlse.fr

Ziv Reich
Weizmann Institute of Science Ha’Nesi Ha’Rishon
Department of Biological Chemistry
Rehovot 76100, Israel
e-mail: ziv.reich@weizmann.ac.il

John A. Rogers
University of Illinois
Department of Materials Science and Engineering
Urbana, IL, USA
e-mail: jrogers@uiuc.edu

Cosmin Roman
ETH Zurich
Micro and Nanosystems Department of Mechanical and Process Engineering
8092 Zurich, Switzerland
e-mail: cosmin.roman@micro.mavt.ethz.ch

Marina Ruths
University of Massachusetts Lowell
Department of Chemistry
1 University Avenue
Lowell, MA 01854, USA
e-mail: marina_ruths@uml.edu

Ozgur Sahin
The Rowland Institute at Harvard
100 Edwin H. Land Blvd
Cambridge, MA 02142, USA
e-mail: sahin@rowland.harvard.edu

Akira Sasahara
Japan Advanced Institute of Science and Technology
School of Materials Science
1-1 Asahidai
923-1292 Nomi, Japan
e-mail: sasahara@jaist.ac.jp

Helmut Schift
Paul Scherrer Institute
Laboratory for Micro- and Nanotechnology
5232 Villigen PSI, Switzerland
e-mail: helmut.schift@psi.ch

André Schirmeisen
University of Münster
Institute of Physics
Wilhelm-Klemm-Str. 10
48149 Münster, Germany
e-mail: schirmeisen@uni-muenster.de

Christian Schulze
Beiersdorf AG
Research & Development
Unnastr. 48
20245 Hamburg, Germany
e-mail: christian.schulze@beiersdorf.com; christian.schulze@uni-leipzig.de

Alexander Schwarz
University of Hamburg
Institute of Applied Physics
Jungiusstr. 11
20355 Hamburg, Germany
e-mail: aschwarz@physnet.uni-hamburg.de
Udo D. Schwarz
Yale University
Department of Mechanical Engineering
15 Prospect Street
New Haven, CT 06520–8284, USA
e-mail: udo.schwarz@yale.edu

Philippe Serp
Ecole Nationale Supérieure d'Ingénieurs en Arts Chimiques et Technologiques
Laboratoire de Chimie de Coordination (LCC)
118 Route de Narbonne
31077 Toulouse, France
e-mail: philippe.serp@ensiacet.fr

Huamei (Mary) Shang
GE Healthcare
4855 W. Electric Ave.
Milwaukee, WI 53219, USA
e-mail: huamei.shang@ge.com

Susan B. Sinnott
University of Florida
Department of Materials Science and Engineering
154 Rhines Hall
Gainesville, FL 32611–6400, USA
e-mail: ssinn@mse.ufl.edu

Anisoara Socoliuc
SPECS Zurich GmbH
Technoparkstr. 1
8005 Zurich, Switzerland
e-mail: socoliuc@nanonis.com

Olav Solgaard
Stanford University
E.L. Ginzton Laboratory
450 Via Palou
Stanford, CA 94305–4088, USA
e-mail: solgaard@stanford.edu

Dan Strehle
University of Leipzig
Institute of Experimental Physics I
Division of Soft Matter Physics
Linnéstr. 5
04103 Leipzig, Germany
e-mail: dan.strehle@uni-leipzig.de

Carsten Stüber
University of Leipzig
Institute of Experimental Physics I
Division of Soft Matter Physics
Linnéstr. 5
04103 Leipzig, Germany
e-mail: stueber@rz.uni-leipzig.de

Yu-Chuan Su
ESS 210
Department of Engineering and System Science 101
Kuang-Fu Road
Hsinchu, 30013, Taiwan
e-mail: ycsu@ess.nthu.edu.tw

Kazuhisa Sueoka
Graduate School of Information Science and Technology
Hokkaido University
Nanoelectronics Laboratory
Kita-14, Nishi-9, Kita-ku
060–0814 Sapporo, Japan
e-mail: sueoka@nano.isthokudai.ac.jp

Yasuhiro Sugawara
Osaka University
Department of Applied Physics
Yamada-Oka 2-1, Suita
565–0871 Osaka, Japan
e-mail: sugawara@ap.eng.osaka-u.ac.jp

Benjamin Sullivan
TearLab Corp.
11025 Roselle Street
San Diego, CA 92121, USA
e-mail: bdsulliv@TearLab.com

Paul Swanson
Nexogen, Inc.
Engineering
8360 C Camino Santa Fe
San Diego, CA 92121, USA
e-mail: pswanson@nexogentech.com
Yung-Chieh Tan
Washington University School of Medicine
Department of Medicine
Division of Dermatology
660 S. Euclid Ave.
St. Louis, MO 63110, USA
e-mail: ytanster@gmail.com

Shia-Yen Teh
University of California at Irvine
Biomedical Engineering Department
3120 Natural Sciences II
Irvine, CA 92697–2715, USA
e-mail: steh@uci.edu

W. Merlijn van Spengen
Leiden University
Kamerlingh Onnes Laboratory
Niels Bohrweg 2
Leiden, CA 2333, The Netherlands
e-mail: spengen@physics.leidenuniv.nl

Peter Vettiger
University of Neuchâtel
SAMLAB
Jaquet-Droz 1
2002 Neuchâtel, Switzerland
e-mail: peter.vettiger@unine.ch

Franziska Wetzel
University of Leipzig
Institute of Experimental Physics I
Division of Soft Matter Physics
Linnéstr. 5
04103 Leipzig, Germany
e-mail: franziska.wetzel@uni-leipzig.de

Heiko Wolf
IBM Research GmbH
Zurich Research Laboratory
Säumerstr. 4
8803 Rüschlikon, Switzerland
e-mail: hwo@zurich.ibm.com

Darrin J. Young
Case Western Reserve University
Department of EECS, Glennan 510
10900 Euclid Avenue
Cleveland, OH 44106, USA
e-mail: djoy@po.cwru.edu

Babak Ziaie
Purdue University
Birck Nanotechnology Center
1205 W. State St.
West Lafayette, IN 47907–2035, USA
e-mail: bziaie@purdue.edu

Christian A. Zorman
Case Western Reserve University
Department of Electrical Engineering and Computer Science
10900 Euclid Avenue
Cleveland, OH 44106, USA
e-mail: caz@case.edu

Jim V. Zoval
Saddleback College
Department of Math and Science
28000 Marguerite Parkway
Mission Viejo, CA 92692, USA
e-mail: jzoval@saddleback.edu
Contents

List of Abbreviations ... XLI

1 Introduction to Nanotechnology
 Bharat Bhushan .. 1
 1.1 Nanotechnology – Definition and Examples ... 1
 1.2 Background and Research Expenditures .. 4
 1.3 Lessons from Nature (Biomimetics) .. 6
 1.4 Applications in Different Fields .. 9
 1.5 Various Issues .. 10
 1.6 Research Training .. 11
 1.7 Organization of the Handbook .. 11
 References ... 12

Part A Nanostructures, Micro-/Nanofabrication and Materials

2 Nanomaterials Synthesis and Applications: Molecule-Based Devices
 Francisco M. Raymo .. 17
 2.1 Chemical Approaches to Nanostructured Materials .. 18
 2.2 Molecular Switches and Logic Gates ... 22
 2.3 Solid State Devices ... 30
 2.4 Conclusions and Outlook ... 42
 References ... 43

3 Introduction to Carbon Nanotubes
 Marc Monthioux, Philippe Serp, Emmanuel Flahaut, Manitra Razafinimanana, Christophe Laurent, Alain Peigney, Wolfgang Bacsa, Jean-Marc Broto ... 47
 3.1 Structure of Carbon Nanotubes .. 48
 3.2 Synthesis of Carbon Nanotubes .. 53
 3.3 Growth Mechanisms of Carbon Nanotubes ... 70
 3.4 Properties of Carbon Nanotubes ... 74
 3.5 Carbon Nanotube-Based Nano-Objects .. 80
 3.6 Applications of Carbon Nanotubes ... 85
 3.7 Toxicity and Environmental Impact of Carbon Nanotubes .. 99
 3.8 Concluding Remarks ... 100
 References ... 101
4 **Nanowires**
Mildred S. Dresselhaus, Yu-Ming Lin, Oded Rabin, Marcie R. Black, Jing Kong, Gene Dresselhaus
4.1 Synthesis .. 119
4.2 Characterization and Physical Properties of Nanowires .. 130
4.3 Applications ... 152
4.4 Concluding Remarks ... 159
References .. 159

5 **Template-Based Synthesis of Nanorod or Nanowire Arrays**
Huamei (Mary) Shang, Guozhong Cao
5.1 Template-Based Approach .. 169
5.2 Electrochemical Deposition .. 170
5.3 Electrophoretic Deposition ... 175
5.4 Template Filling .. 180
5.5 Converting from Reactive Templates 182
5.6 Summary and Concluding Remarks 182
References .. 183

6 **Templated Self-Assembly of Particles**
Tobias Kraus, Heiko Wolf
6.1 The Assembly Process .. 187
6.2 Classes of Directed Particle Assembly 189
6.3 Templates ... 202
6.4 Processes and Setups .. 205
6.5 Conclusions .. 206
References .. 207

7 **Three-Dimensional Nanostructure Fabrication by Focused Ion Beam Chemical Vapor Deposition**
Shinji Matsui
7.1 Three-Dimensional Nanostructure Fabrication 211
7.2 Nanoelectromechanics .. 215
7.3 Nanoptics: Brilliant Blue Observation from a *Morpho* Butterfly Scale Quasistructure 223
7.4 Nanobiology .. 224
7.5 Summary ... 228
References .. 228

8 **Introduction to Micro-/Nanofabrication**
Babak Ziaie, Antonio Baldi, Massood Z. Atashbar
8.1 Basic Microfabrication Techniques 231
8.2 MEMS Fabrication Techniques 244
8.3 Nanofabrication Techniques 256
8.4 Summary and Conclusions .. 265
References .. 265
9 Nanoimprint Lithography – Patterning of Resists Using Molding
Helmut Schift, Anders Kristensen .. 271
 9.1 Emerging Nanopatterning Methods ... 273
 9.2 Nanoimprint Process .. 277
 9.3 Tools and Materials for Nanoimprinting 288
 9.4 Nanoimprinting Applications ... 294
 9.5 Conclusions and Outlook .. 302
References .. 304

10 Stamping Techniques for Micro- and Nanofabrication
Etienne Menard, John A. Rogers ... 313
 10.1 High-Resolution Stamps .. 314
 10.2 Microcontact Printing .. 316
 10.3 Nanotransfer Printing ... 318
 10.4 Applications ... 322
 10.5 Conclusions ... 329
References .. 330

11 Material Aspects of Micro- and Nanoelectromechanical Systems
Christian A. Zorman, Mehran Mehregany .. 333
 11.1 Silicon ... 333
 11.2 Germanium-Based Materials .. 340
 11.3 Metals ... 341
 11.4 Harsh-Environment Semiconductors .. 343
 11.5 GaAs, InP, and Related III–V Materials 349
 11.6 Ferroelectric Materials ... 350
 11.7 Polymer Materials .. 351
 11.8 Future Trends ... 352
References .. 353

Part B MEMS/NEMS and BioMEMS/NEMS

12 MEMS/NEMS Devices and Applications
Darrin J. Young, Christian A. Zorman, Mehran Mehregany 359
 12.1 MEMS Devices and Applications ... 361
 12.2 Nanoelectromechanical Systems (NEMS) 380
 12.3 Current Challenges and Future Trends 383
References .. 384

13 Next-Generation DNA Hybridization and Self-Assembly Nanofabrication Devices
Michael J. Heller, Benjamin Sullivan, Dietrich Dehlinger, Paul Swanson,
Dalibor Hodko ... 389
 13.1 Electronic Microarray Technology .. 391
 13.2 Electric Field-Assisted Nanofabrication Processes 397
 13.3 Conclusions ... 399
References .. 400
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Single-Walled Carbon Nanotube Sensor Concepts</td>
<td>Cosmin Roman, Thomas Helbling, Christofer Hierold</td>
<td>403</td>
</tr>
<tr>
<td>14.1</td>
<td>Design Considerations for SWNT Sensors</td>
<td></td>
<td>404</td>
</tr>
<tr>
<td>14.2</td>
<td>Fabrication of SWNT Sensors</td>
<td></td>
<td>412</td>
</tr>
<tr>
<td>14.3</td>
<td>Example State-of-the-Art Applications</td>
<td></td>
<td>416</td>
</tr>
<tr>
<td>14.4</td>
<td>Concluding Remarks</td>
<td></td>
<td>421</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>421</td>
</tr>
<tr>
<td>15</td>
<td>Nanomechanical Cantilever Array Sensors</td>
<td>Hans Peter Lang, Martin Hegner, Christoph Gerber</td>
<td>427</td>
</tr>
<tr>
<td>15.1</td>
<td>Technique</td>
<td></td>
<td>427</td>
</tr>
<tr>
<td>15.2</td>
<td>Cantilever Array Sensors</td>
<td></td>
<td>429</td>
</tr>
<tr>
<td>15.3</td>
<td>Modes of Operation</td>
<td></td>
<td>430</td>
</tr>
<tr>
<td>15.4</td>
<td>Microfabrication</td>
<td></td>
<td>434</td>
</tr>
<tr>
<td>15.5</td>
<td>Measurement Setup</td>
<td></td>
<td>434</td>
</tr>
<tr>
<td>15.6</td>
<td>Functionalization Techniques</td>
<td></td>
<td>438</td>
</tr>
<tr>
<td>15.7</td>
<td>Applications</td>
<td></td>
<td>439</td>
</tr>
<tr>
<td>15.8</td>
<td>Conclusions and Outlook</td>
<td></td>
<td>445</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>446</td>
</tr>
<tr>
<td>16</td>
<td>Biological Molecules in Therapeutic Nanodevices</td>
<td>Stephen C. Lee, Bharat Bhushan</td>
<td>453</td>
</tr>
<tr>
<td>16.1</td>
<td>Definitions and Scope</td>
<td></td>
<td>454</td>
</tr>
<tr>
<td>16.2</td>
<td>Assembly Approaches</td>
<td></td>
<td>461</td>
</tr>
<tr>
<td>16.3</td>
<td>Sensing Devices</td>
<td></td>
<td>471</td>
</tr>
<tr>
<td>16.4</td>
<td>Concluding Remarks: Barriers to Practice</td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>17</td>
<td>G-Protein Coupled Receptors: Progress in Surface Display and Biosensor Technology</td>
<td>Wayne R. Leifert, Tamara H. Cooper, Kelly Bailey</td>
<td>485</td>
</tr>
<tr>
<td>17.1</td>
<td>The GPCR:G–Protein Activation Cycle</td>
<td></td>
<td>488</td>
</tr>
<tr>
<td>17.2</td>
<td>Preparation of GPCRs and G–Proteins</td>
<td></td>
<td>489</td>
</tr>
<tr>
<td>17.3</td>
<td>Protein Engineering in GPCR Signaling</td>
<td></td>
<td>490</td>
</tr>
<tr>
<td>17.4</td>
<td>GPCR Biosensing</td>
<td></td>
<td>491</td>
</tr>
<tr>
<td>17.5</td>
<td>The Future of GPCRs</td>
<td></td>
<td>499</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>499</td>
</tr>
<tr>
<td>18</td>
<td>Microfluidic Devices and Their Applications to Lab-on-a-Chip</td>
<td>Chong H. Ahn, Jin-Woo Choi</td>
<td>503</td>
</tr>
<tr>
<td>18.1</td>
<td>Materials for Microfluidic Devices and Micro/Nanofabrication Techniques</td>
<td></td>
<td>504</td>
</tr>
<tr>
<td>18.2</td>
<td>Active Microfluidic Devices</td>
<td></td>
<td>507</td>
</tr>
<tr>
<td>18.3</td>
<td>Smart Passive Microfluidic Devices</td>
<td></td>
<td>513</td>
</tr>
<tr>
<td>18.4</td>
<td>Lab-on-a-Chip for Biochemical Analysis</td>
<td></td>
<td>520</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>527</td>
</tr>
</tbody>
</table>
19 Centrifuge-Based Fluidic Platforms
Jim V. Zoval, Guangyao Jia, Horacio Kido, Jitae Kim, Nahui Kim,
Marc J. Madou ... 531
19.2 Compact Disc or Microcentrifuge Fluidics 534
19.3 CD Applications ... 538
19.4 Conclusion ... 549
References ... 550

20 Micro-/Nanodroplets in Microfluidic Devices
Yung-Chieh Tan, Shia-Yen Teh, Abraham P. Lee 553
20.1 Active or Programmable Droplet Systems 554
20.2 Passive Droplet Control Techniques 557
20.3 Applications ... 564
20.4 Conclusions ... 566
References ... 566

Part C Scanning-Probe Microscopy

21 Scanning Probe Microscopy –
Principle of Operation, Instrumentation, and Probes
Bharat Bhushan, Othmar Marti .. 573
21.1 Scanning Tunneling Microscope .. 575
21.2 Atomic Force Microscope .. 579
21.3 AFM Instrumentation and Analyses 595
References ... 612

22 General and Special Probes in Scanning Microscopies
Jason Hafner, Edin (I-Chen) Chen, Ratnesh Lal, Sungho Jin 619
22.1 Atomic Force Microscopy .. 620
22.2 Scanning Tunneling Microscopy .. 630
References ... 631

23 Noncontact Atomic Force Microscopy and Related Topics
Franz J. Giessibl, Yasuhiro Sugawara, Seizo Morita, Hirotaka Hosoi,
Kazuhsa Sueoka, Koichi Mukasa, Akira Sasahara, Hiroshi Onishi 635
23.1 Atomic Force Microscopy (AFM) .. 636
23.2 Applications to Semiconductors .. 641
23.3 Applications to Insulators .. 647
23.4 Applications to Molecules .. 654
References ... 658

24 Low-Temperature Scanning Probe Microscopy
Markus Morgenstern, Alexander Schwarz, Udo D. Schwarz 663
24.1 Microscope Operation at Low Temperatures 664
24.2 Instrumentation .. 666
24.3 Scanning Tunneling Microscopy and Spectroscopy .. 669
24.4 Scanning Force Microscopy and Spectroscopy ... 688
References ... 700

25 Higher Harmonics and Time–Varying Forces in Dynamic Force Microscopy
Ozgur Sahin, Calvin F. Quate, Olav Solgaard, Franz J. Giessibl 711
25.1 Modeling of Tip–Sample Interaction Forces in Tapping–Mode AFM 712
25.2 Enhancing the Cantilever Response to Time–Varying Forces 714
25.3 Application Examples .. 720
25.4 Higher–Harmonic Force Microscopy with Small Amplitudes 724
References ... 728

26 Dynamic Modes of Atomic Force Microscopy
André Schirmeisen, Boris Anczykowski, Hendrik Hölscher, Harald Fuchs 731
26.1 Motivation – Measurement of a Single Atomic Bond 732
26.2 Harmonic Oscillator: a Model System for Dynamic AFM 736
26.3 Dynamic AFM Operational Modes .. 737
26.4 Q–Control ... 750
26.5 Dissipation Processes Measured with Dynamic AFM 754
26.6 Conclusions .. 758
References ... 758

27 Molecular Recognition Force Microscopy: From Molecular Bonds to Complex Energy Landscapes
Peter Hinterdorfer, Andreas Ebner, Hermann Gruber, Ruti Kapon, Ziv Reich 763
27.1 Ligand Tip Chemistry .. 764
27.2 Immobilization of Receptors onto Probe Surfaces ... 766
27.3 Single–Molecule Recognition Force Detection .. 767
27.4 Principles of Molecular Recognition Force Spectroscopy 769
27.5 Recognition Force Spectroscopy: From Isolated Molecules to Biological Membranes ... 771
27.6 Recognition Imaging .. 779
27.7 Concluding Remarks .. 781
References ... 781

Part D Bio-/Nanotribology and Bio-/Nanomechanics

28 Nanotribology, Nanomechanics, and Materials Characterization
Bharat Bhushan ... 789
28.1 Description of AFM/FFM and Various Measurement Techniques 791
28.2 Surface Imaging, Friction, and Adhesion ... 802
28.3 Wear, Scratching, Local Deformation, and Fabrication/Machining 828
28.4 Indentation ... 836
32.3 Thermal Noise Imaging .. 1018
32.4 Applications in Cell Biology ... 1018
References ... 1021

33 Scale Effect in Mechanical Properties and Tribology
Bharat Bhushan, Michael Nosonovsky .. 1023
33.1 Nomenclature ... 1024
33.2 Introduction .. 1025
33.3 Scale Effect in Mechanical Properties 1027
33.4 Scale Effect in Surface Roughness and Contact Parameters 1031
33.5 Scale Effect in Friction .. 1034
33.6 Scale Effect in Wear ... 1046
33.7 Scale Effect in Interface Temperature 1046
33.8 Closure .. 1047
33.9 Statistics of Particle Size Distribution 1049
References ... 1052

34 Structural, Nanomechanical, and Nanotribological Characterization of Human Hair Using Atomic Force Microscopy and Nanoindentation
Bharat Bhushan, Carmen LaTorre .. 1055
34.1 Human Hair, and Skin and Hair Care Products 1058
34.2 Experimental ... 1068
34.3 Structural Characterization Using an AFM 1080
34.4 Nanomechanical Characterization
 Using Nanoindentation, Nanoscratch, and AFM 1087
34.5 Multiscale Tribological Characterization 1112
34.6 Conditioner Thickness Distribution and Binding Interactions
 on Hair Surface .. 1145
34.7 Surface Potential Studies of Human Hair
 Using Kelvin Probe Microscopy ... 1153
34.8 Conclusions .. 1164
34.A Shampoo and Conditioner Treatment Procedure 1166
34.B Conditioner Thickness Approximation 1166
References ... 1167

35 Cellular Nanomechanics
Roger Kamm, Jan Lammerding, Mohammad Mofrad 1171
35.1 Overview ... 1171
35.2 Structural Components of a Cell ... 1173
35.3 Experimental Methods .. 1179
35.4 Theoretical and Computational Descriptions 1185
35.5 Mechanics of Subcellular Structures 1188
35.6 Current Understanding and Future Needs 1196
References ... 1196
36 Optical Cell Manipulation
Carsten Stüber, Tobias Kießling, Anatol Fritsch, Franziska Wetzel,
Christian Schulze, Dan Strehle, Josef Käs .. 1201
36.1 Interaction of Laser Light with Cells .. 1202
36.2 Optical Tweezers ... 1206
36.3 Holographic Optical Tweezers .. 1209
36.4 Optical Rotation ... 1211
36.5 Microdissection or Laser Scalpels ... 1213
36.6 Cell Sorting ... 1215
36.7 The Optical Stretcher ... 1218
36.8 Conclusion and Outlook ... 1222
References ... 1222

37 Mechanical Properties of Nanostructures
Bharat Bhushan ... 1227
37.1 Experimental Techniques for Measurement
 of Mechanical Properties of Nanostructures ... 1229
37.2 Experimental Results and Discussion ... 1235
37.3 Finite-Element Analysis of Nanostructures with Roughness
 and Scratches ... 1253
37.4 Summary .. 1259
37.A Fabrication Procedure for the Double-Anchored
 and Cantilever Beams ... 1260
References ... 1262

Part E Molecularly Thick Films for Lubrication

38 Nanotribology of Ultrathin and Hard Amorphous Carbon Films
Bharat Bhushan ... 1269
38.1 Description of Common Deposition Techniques 1273
38.2 Chemical and Physical Coating Characterization 1277
38.3 Micromechanical and Tribological Coating Characterization 1283
38.4 Closure ... 1304
References ... 1305

39 Self-Assembled Monolayers for Nanotribology
 and Surface Protection
Bharat Bhushan ... 1309
39.1 Background .. 1309
39.2 A Primer to Organic Chemistry .. 1313
39.3 Self-Assembled Monolayers: Substrates, Spacer Chains,
 and End Groups in the Molecular Chains .. 1316
39.4 Contact Angle and Nanotribological Properties of SAMs 1319
39.5 Summary .. 1340
References ... 1342
40 Nanoscale Boundary Lubrication Studies
Bharat Bhushan .. 1347
40.1 Boundary Films ... 1347
40.2 Nanodeformation, Molecular Conformation, Spreading,
and Nanotribological Studies ... 1348
40.3 Nanotribological, Electrical, and Chemical Degradations Studies
and Environmental Effects in Novel PFPE Lubricant Films 1366
40.4 Nanotribological and Electrical Studies of Ionic Liquid Films 1375
40.5 Conclusions ... 1392
References ... 1393

Part F Biomimetics

41 Multifunctional Plant Surfaces and Smart Materials
Kerstin Koch, Bharat Bhushan, Wilhelm Barthlott 1399
41.1 The Architecture of Plant Surfaces 1402
41.2 Multifunctional Plant Surfaces 1417
41.3 Technical Uses of Superhydrophobicity 1426
41.4 Conclusions .. 1430
References ... 1431

42 Lotus Effect: Surfaces with Roughness-Induced
Superhydrophobicity, Self-Cleaning, and Low Adhesion
Bharat Bhushan, Yong Chae Jung, Michael Nosonovsky 1437
42.1 Background .. 1438
42.2 Modeling of Contact Angle for a Liquid in Contact
with a Rough Surface ... 1442
42.3 Lotus Effect Surfaces in Nature 1453
42.4 How to Make a Superhydrophobic Surface 1462
42.5 Fabrication and Characterization of Micro-, Nano-, and Hierarchical Patterned Surfaces 1468
42.6 Modeling, Fabrication, and Characterization
of Oleophobic/Oleophilic Surfaces 1509
42.7 Conclusions .. 1517
References ... 1518

43 Biological and Biologically Inspired Attachment Systems
Stanislav N. Gorb .. 1525
43.1 Foreword .. 1525
43.2 Attachment Systems ... 1526
43.3 Biological Functions of Attachment 1527
43.4 Time Scale of Attachment .. 1529
43.5 Principles of Biological Attachment 1530
43.6 Locomotory Attachment Pads: Hairy Versus Smooth 1533
43.7 Dry and Wet Systems .. 1535
43.8 Scaling Effects .. 1536
Part G Industrial Applications

45 The Millipede – A Nanotechnology-Based AFM Data-Storage System
Gerd K. Binnig, Giovanni Cherubini, Michel Despont, Urs T. Dürig, Evangelos Eleftheriou, Haralampos Pozidis, Peter Vettiger
45.1 The Millipede Concept .. 1601
45.2 Thermomechanical AFM Data Storage ... 1604
45.3 Array Design, Technology, and Fabrication .. 1606
45.4 Array Characterization .. 1607
45.5 Three-Terminal Cantilever Design ... 1609
45.6 x,y,z Medium Microscanner ... 1610
45.7 First Write/Read Results with the 32x32 Array Chip 1613
45.8 Polymer Medium ... 1614
45.9 Read Channel Model ... 1621
45.10 System Aspects ... 1624
45.11 Conclusions ... 1629
References ... 1630

46 Nanorobotics
Bradley J. Nelson, Lixin Dong .. 1633
46.1 Overview of Nanorobotics ... 1634
46.2 Actuation at Nanoscales .. 1635
46.3 Nanorobotic Manipulation Systems .. 1637
Part H Micro-/Nanodevice Reliability

47 MEMS/NEMS and BioMEMS/BioNEMS: Materials, Devices, and Biomimetics
 Bharat Bhushan .. 1663
 47.1 MEMS/NEMS Basics .. 1664
 47.2 Nanotribology and Nanomechanics Studies of Silicon and Related Materials .. 1683
 47.3 Lubrication Studies for MEMS/NEMS 1691
 47.4 Nanotribological Studies of Biological Molecules on Silicon-Based and Polymer Surfaces and Submicron Particles for Therapeutics and Diagnostics .. 1698
 47.5 Surfaces with Roughness-Induced Superhydrophobicity, Self-Cleaning, and Low Adhesion .. 1708
 47.6 Component-Level Studies .. 1717
 47.7 Conclusions .. 1728
 47.A Micro-Nanofabrication Techniques 1729
 References .. 1733

48 Friction and Wear in Micro- and Nanomachines
 Maarten P. de Boer, Alex D. Corwin, Frank W. DelRio, W. Robert Ashurst 1741
 48.1 From Single- to Multiple-Asperity Friction 1743
 48.2 Nanotractor Device Description 1747
 48.3 Concluding Remarks .. 1755
 References .. 1756

49 Failure Mechanisms in MEMS/NEMS Devices
 W. Merlijn van Spengen, Robert Modliński, Robert Puers, Anne Jourdain 1761
 49.1 Failure Modes and Failure Mechanisms 1762
 49.2 Stiction and Charge-Related Failure Mechanisms 1763
 49.3 Creep, Fatigue, Wear, and Packaging-Related Failures 1769
 49.4 Conclusions .. 1779
 References .. 1779

50 Mechanical Properties of Micromachined Structures
 Harold Kahn .. 1783
 50.1 Measuring Mechanical Properties of Films on Substrates 1783
 50.2 Micromachined Structures for Measuring Mechanical Properties 1785
 50.3 Measurements of Mechanical Properties 1795
 References .. 1799
51 High-Volume Manufacturing and Field Stability of MEMS Products
 Jack Martin ... 1803
 51.1 Background .. 1804
 51.2 Manufacturing Strategy ... 1806
 51.3 Robust Manufacturing ... 1808
 51.4 Stable Field Performance ... 1825
 References .. 1828

52 Packaging and Reliability Issues in Micro-/Nanosystems
 Yu-Chuan Su, Jongbaeg Kim, Yu-Ting Cheng, Mu Chiao, Liwei Lin 1835
 52.1 Introduction MEMS Packaging 1835
 52.2 Hermetic and Vacuum Packaging and Applications 1841
 52.3 Thermal Issues and Packaging Reliability 1851
 52.4 Future Trends and Summary ... 1858
 References .. 1859

Part I Technological Convergence and Governing Nanotechnology

53 Governing Nanotechnology: Social, Ethical and Human Issues
 William Sims Bainbridge .. 1867
 53.1 Social Science Background ... 1867
 53.2 Human Impacts of Nanotechnology 1871
 53.3 Regulating Nanotechnology .. 1874
 53.4 The Cultural Context for Nanotechnology 1876
 53.5 Conclusions .. 1879
 References .. 1880

Acknowledgements ... 1885
About the Authors .. 1887
Subject Index .. 1919
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μCP</td>
<td>microcontact printing</td>
</tr>
<tr>
<td>1-D</td>
<td>one-dimensional</td>
</tr>
<tr>
<td>18-MEA</td>
<td>18-methyl eicosanoic acid</td>
</tr>
<tr>
<td>2-D</td>
<td>two-dimensional</td>
</tr>
<tr>
<td>2-DEG</td>
<td>two-dimensional electron gas</td>
</tr>
<tr>
<td>3-APTES</td>
<td>3-aminopropyltriethoxysilane</td>
</tr>
<tr>
<td>3-D</td>
<td>three-dimensional</td>
</tr>
<tr>
<td>a-BSA</td>
<td>anti-bovine serum albumin</td>
</tr>
<tr>
<td>a-C</td>
<td>amorphous carbon</td>
</tr>
<tr>
<td>A/D</td>
<td>analog-to-digital</td>
</tr>
<tr>
<td>AA</td>
<td>amino acid</td>
</tr>
<tr>
<td>AAM</td>
<td>anodized alumina membrane</td>
</tr>
<tr>
<td>ABP</td>
<td>actin binding protein</td>
</tr>
<tr>
<td>AC</td>
<td>alternating-current</td>
</tr>
<tr>
<td>AC</td>
<td>amorphous carbon</td>
</tr>
<tr>
<td>ACF</td>
<td>autocorrelation function</td>
</tr>
<tr>
<td>ADC</td>
<td>analog-to-digital converter</td>
</tr>
<tr>
<td>ADXL</td>
<td>analog devices accelerometer</td>
</tr>
<tr>
<td>AFAM</td>
<td>atomic force acoustic microscopy</td>
</tr>
<tr>
<td>AFM</td>
<td>atomic force microscopy</td>
</tr>
<tr>
<td>AKD</td>
<td>alkylketene dimer</td>
</tr>
<tr>
<td>ALD</td>
<td>atomic layer deposition</td>
</tr>
<tr>
<td>AM</td>
<td>amplitude modulation</td>
</tr>
<tr>
<td>AMU</td>
<td>atomic mass unit</td>
</tr>
<tr>
<td>AOD</td>
<td>acoustooptical deflector</td>
</tr>
<tr>
<td>AOM</td>
<td>acoustooptical modulator</td>
</tr>
<tr>
<td>AP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>APB</td>
<td>actin binding protein</td>
</tr>
<tr>
<td>APCVD</td>
<td>atmospheric-pressure chemical vapor deposition</td>
</tr>
<tr>
<td>APDMES</td>
<td>aminopropylidimethylethoxysilane</td>
</tr>
<tr>
<td>APTES</td>
<td>aminopropyltriethoxysilane</td>
</tr>
<tr>
<td>ASIC</td>
<td>application-specific integrated circuit</td>
</tr>
<tr>
<td>ASR</td>
<td>analyte-specific reagent</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BFP</td>
<td>biomembrane force probe</td>
</tr>
<tr>
<td>BGA</td>
<td>ball grid array</td>
</tr>
<tr>
<td>BHF</td>
<td>buffered HF</td>
</tr>
<tr>
<td>BHPET</td>
<td>1,1’-((3,6,9,12,15-pentaoxapentadecane-1,15-diy1)bis(3-hydroxyethyl-1H-</td>
</tr>
<tr>
<td>BHPT</td>
<td>1,1’-(pentane-1,5-diy1)bis(3-hydroxyethyl-1H-imidazolium-1-yl)dim[bis(trifluoromethanesulfonylimide)]</td>
</tr>
<tr>
<td>BiCMOS</td>
<td>bipolar CMOS</td>
</tr>
<tr>
<td>bioMEMS</td>
<td>biomedical microelectromechanical system</td>
</tr>
<tr>
<td>bioNEMS</td>
<td>biomedical nanoelectromechanical system</td>
</tr>
<tr>
<td>BMIM</td>
<td>1-butyl-3-methylimidazolium</td>
</tr>
<tr>
<td>BP</td>
<td>bit pitch</td>
</tr>
<tr>
<td>BPAG1</td>
<td>bullous pemphigoid antigen 1</td>
</tr>
<tr>
<td>BPT</td>
<td>biphenyl-4-thiol</td>
</tr>
<tr>
<td>BPTC</td>
<td>cross-linked BPT</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BST</td>
<td>barium strontium titanate</td>
</tr>
<tr>
<td>BTMAC</td>
<td>behentrimonium chloride</td>
</tr>
<tr>
<td>CA</td>
<td>constant amplitude</td>
</tr>
<tr>
<td>CA</td>
<td>contact angle</td>
</tr>
<tr>
<td>CAD</td>
<td>computer-aided design</td>
</tr>
<tr>
<td>CAH</td>
<td>contact angle hysteresis</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CAS</td>
<td>Crk-associated substrate</td>
</tr>
<tr>
<td>CBA</td>
<td>cantilever beam array</td>
</tr>
<tr>
<td>CBD</td>
<td>chemical bath deposition</td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled device</td>
</tr>
<tr>
<td>CCVD</td>
<td>catalytic chemical vapor deposition</td>
</tr>
<tr>
<td>CD</td>
<td>compact disc</td>
</tr>
<tr>
<td>CD</td>
<td>critical dimension</td>
</tr>
<tr>
<td>CDR</td>
<td>complementarity determining region</td>
</tr>
<tr>
<td>CDW</td>
<td>charge density wave</td>
</tr>
<tr>
<td>CE</td>
<td>capillary electrophoresis</td>
</tr>
<tr>
<td>CE</td>
<td>constant excitation</td>
</tr>
<tr>
<td>CEW</td>
<td>continuous electrowetting</td>
</tr>
<tr>
<td>CG</td>
<td>controlled geometry</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CIC</td>
<td>cantilever in cantilever</td>
</tr>
<tr>
<td>CMC</td>
<td>cell membrane complex</td>
</tr>
<tr>
<td>CMC</td>
<td>critical micelle concentration</td>
</tr>
<tr>
<td>CMOS</td>
<td>complementary</td>
</tr>
<tr>
<td>CMP</td>
<td>chemical mechanical polishing</td>
</tr>
<tr>
<td>bcc</td>
<td>body-centered cubic</td>
</tr>
<tr>
<td>BCH</td>
<td>brucite-type cobalt hydroxide</td>
</tr>
<tr>
<td>BCS</td>
<td>Bardeen–Cooper–Schrieffer</td>
</tr>
<tr>
<td>BD</td>
<td>blu-ray disc</td>
</tr>
<tr>
<td>BDCS</td>
<td>biphényldiméthylchlorosilane</td>
</tr>
<tr>
<td>BE</td>
<td>boundary element</td>
</tr>
<tr>
<td>BAP</td>
<td>barometric absolute pressure</td>
</tr>
<tr>
<td>BAPDMA</td>
<td>behenyl amidopropyl dimethyamine glutamate</td>
</tr>
<tr>
<td>bcc</td>
<td>body-centered cubic</td>
</tr>
<tr>
<td>BCH</td>
<td>brucite-type cobalt hydroxide</td>
</tr>
<tr>
<td>BCS</td>
<td>Bardeen–Cooper–Schrieffer</td>
</tr>
<tr>
<td>BD</td>
<td>blu-ray disc</td>
</tr>
<tr>
<td>BDCS</td>
<td>biphényldiméthylchlorosilane</td>
</tr>
<tr>
<td>BE</td>
<td>boundary element</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CNF</td>
<td>carbon nanofiber</td>
</tr>
<tr>
<td>CNFET</td>
<td>carbon nanotube field-effect transistor</td>
</tr>
<tr>
<td>CNT</td>
<td>carbon nanotube</td>
</tr>
<tr>
<td>COC</td>
<td>cyclic olefin copolymer</td>
</tr>
<tr>
<td>COF</td>
<td>chip-on-flex</td>
</tr>
<tr>
<td>COF</td>
<td>coefficient of friction</td>
</tr>
<tr>
<td>COG</td>
<td>cost of goods</td>
</tr>
<tr>
<td>CoO</td>
<td>cost of ownership</td>
</tr>
<tr>
<td>COS</td>
<td>CV-1 in origin with SV40</td>
</tr>
<tr>
<td>CP</td>
<td>circularly permuted</td>
</tr>
<tr>
<td>CPU</td>
<td>central processing unit</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CSK</td>
<td>cytoskeleton</td>
</tr>
<tr>
<td>CSM</td>
<td>continuous stiffness measurement</td>
</tr>
<tr>
<td>CTE</td>
<td>coefficient of thermal expansion</td>
</tr>
<tr>
<td>Cu-TBBP</td>
<td>Cu-tetra-3,5-di-tertiary-butyl-phenyl porphyrin</td>
</tr>
<tr>
<td>CVD</td>
<td>chemical vapor deposition</td>
</tr>
<tr>
<td>DBR</td>
<td>distributed Bragg reflector</td>
</tr>
<tr>
<td>DC-PECVD</td>
<td>direct-current plasma-enhanced CVD</td>
</tr>
<tr>
<td>DC</td>
<td>direct-current</td>
</tr>
<tr>
<td>DDT</td>
<td>dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>DEP</td>
<td>dielectrophoresis</td>
</tr>
<tr>
<td>DFB</td>
<td>distributed feedback</td>
</tr>
<tr>
<td>DFM</td>
<td>dynamic force microscopy</td>
</tr>
<tr>
<td>DFS</td>
<td>dynamic force spectroscopy</td>
</tr>
<tr>
<td>DGU</td>
<td>density gradient ultracentrifugation</td>
</tr>
<tr>
<td>DI</td>
<td>digital instrument force modulation</td>
</tr>
<tr>
<td>DI</td>
<td>digital instrument tapping mode etched Si probe</td>
</tr>
<tr>
<td>EAM</td>
<td>embedded atom method</td>
</tr>
<tr>
<td>EB</td>
<td>electron beam</td>
</tr>
<tr>
<td>EBD</td>
<td>electron beam deposition</td>
</tr>
<tr>
<td>EBID</td>
<td>electron-beam-induced deposition</td>
</tr>
<tr>
<td>EBL</td>
<td>electron-beam lithography</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>ECR-CVD</td>
<td>electron cyclotron resonance chemical vapor deposition</td>
</tr>
<tr>
<td>ED</td>
<td>electron diffraction</td>
</tr>
<tr>
<td>EDC</td>
<td>1-ethyl-3-(3-dimethylaminopropyl) carbodiimide</td>
</tr>
<tr>
<td>EELS</td>
<td>electron energy loss spectra</td>
</tr>
<tr>
<td>EFM</td>
<td>electric field gradient microscopy</td>
</tr>
<tr>
<td>EFM</td>
<td>electrostatic force microscopy</td>
</tr>
<tr>
<td>EHD</td>
<td>elastohydrodynamic</td>
</tr>
<tr>
<td>EO</td>
<td>electroosmosis</td>
</tr>
<tr>
<td>EOF</td>
<td>electroosmotic flow</td>
</tr>
<tr>
<td>EOS</td>
<td>electrical overstress</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ESEM</td>
<td>environmental scanning electron microscope</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EUV</td>
<td>extreme ultraviolet</td>
</tr>
<tr>
<td>EW</td>
<td>electrowetting</td>
</tr>
<tr>
<td>EWOD</td>
<td>electrowetting on dielectric</td>
</tr>
<tr>
<td>F-actin</td>
<td>filamentous actin</td>
</tr>
<tr>
<td>FA</td>
<td>focal adhesion</td>
</tr>
<tr>
<td>FAA</td>
<td>formaldehyde–acetic acid–ethanol</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence-activated cell sorting</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FAK</td>
<td>focal adhesion kinase</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FC</td>
<td>flip-chip</td>
</tr>
<tr>
<td>FCA</td>
<td>filtered cathodic arc</td>
</tr>
<tr>
<td>fcc</td>
<td>face-centered cubic</td>
</tr>
<tr>
<td>FCP</td>
<td>force calibration plot</td>
</tr>
<tr>
<td>FCS</td>
<td>fluorescence correlation spectroscopy</td>
</tr>
<tr>
<td>FD</td>
<td>finite difference</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FE</td>
<td>finite element</td>
</tr>
<tr>
<td>FEM</td>
<td>finite element method</td>
</tr>
<tr>
<td>FEM</td>
<td>finite element modeling</td>
</tr>
<tr>
<td>FESEM</td>
<td>field emission SEM</td>
</tr>
<tr>
<td>FESP</td>
<td>force modulation etched Si probe</td>
</tr>
<tr>
<td>FET</td>
<td>field-effect transistor</td>
</tr>
<tr>
<td>FFM</td>
<td>friction force microscope</td>
</tr>
<tr>
<td>FFM</td>
<td>friction force microscopy</td>
</tr>
<tr>
<td>FIB-CVD</td>
<td>focused ion beam chemical vapor deposition</td>
</tr>
<tr>
<td>FIB</td>
<td>focused ion beam</td>
</tr>
<tr>
<td>FIM</td>
<td>field ion microscope</td>
</tr>
<tr>
<td>FIP</td>
<td>feline coronavirus</td>
</tr>
<tr>
<td>FKT</td>
<td>Frenkel–Kontorova–Tomlinson</td>
</tr>
<tr>
<td>FM</td>
<td>frequency modulation</td>
</tr>
<tr>
<td>FMEA</td>
<td>failure-mode effect analysis</td>
</tr>
<tr>
<td>FP6</td>
<td>Sixth Framework Program</td>
</tr>
<tr>
<td>FP</td>
<td>fluorescence polarization</td>
</tr>
<tr>
<td>FPR</td>
<td>N-formyl peptide receptor</td>
</tr>
<tr>
<td>FS</td>
<td>force spectroscopy</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier-transform infrared</td>
</tr>
<tr>
<td>FV</td>
<td>force–volume</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-aminobutyric acid</td>
</tr>
<tr>
<td>GDP</td>
<td>guanosine diphosphate</td>
</tr>
<tr>
<td>GF</td>
<td>gauge factor</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GMR</td>
<td>giant magnetoresistive</td>
</tr>
<tr>
<td>GOD</td>
<td>glucose oxidase</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>GPS</td>
<td>global positioning system</td>
</tr>
<tr>
<td>GSED</td>
<td>gaseous secondary-electron detector</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>GW</td>
<td>Greenwood and Williamson</td>
</tr>
<tr>
<td>HDT</td>
<td>hexadecanethiol</td>
</tr>
<tr>
<td>HDTV</td>
<td>high-definition television</td>
</tr>
<tr>
<td>HEK</td>
<td>human embryonic kidney 293</td>
</tr>
<tr>
<td>HEL</td>
<td>hot embossing lithography</td>
</tr>
<tr>
<td>HEXSIL</td>
<td>hexagonal honeycomb polysilicon</td>
</tr>
<tr>
<td>HF</td>
<td>hydrofluoric</td>
</tr>
<tr>
<td>HMDS</td>
<td>hexamethyldisilazane</td>
</tr>
<tr>
<td>HNA</td>
<td>hydrofluoric-nitric-acetic</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>HOP</td>
<td>highly oriented pyrolytic</td>
</tr>
<tr>
<td>HOPG</td>
<td>highly oriented pyrolytic graphite</td>
</tr>
<tr>
<td>HOT</td>
<td>holographic optical tweezer</td>
</tr>
<tr>
<td>HP</td>
<td>hot-pressing</td>
</tr>
<tr>
<td>HPI</td>
<td>hexagonally packed intermediate</td>
</tr>
<tr>
<td>HRTEM</td>
<td>high-resolution transmission electron microscope</td>
</tr>
<tr>
<td>HSA</td>
<td>human serum albumin</td>
</tr>
<tr>
<td>HtBDC</td>
<td>hexa-tert-butyl-decacyclene</td>
</tr>
<tr>
<td>HTCS</td>
<td>high-temperature superconductivity</td>
</tr>
<tr>
<td>HTS</td>
<td>high throughput screening</td>
</tr>
<tr>
<td>HUVEC</td>
<td>human umbilical venous endothelial cell</td>
</tr>
<tr>
<td>IBD</td>
<td>ion beam deposition</td>
</tr>
<tr>
<td>IC</td>
<td>integrated circuit</td>
</tr>
<tr>
<td>ICA</td>
<td>independent component analysis</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>intercellular adhesion molecules 1</td>
</tr>
<tr>
<td>ICAM-2</td>
<td>intercellular adhesion molecules 2</td>
</tr>
<tr>
<td>ICT</td>
<td>information and communication technology</td>
</tr>
<tr>
<td>IDA</td>
<td>interdigitated array</td>
</tr>
<tr>
<td>IF</td>
<td>intermediate filament</td>
</tr>
<tr>
<td>IF</td>
<td>intermediate-frequency</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>IKVAV</td>
<td>isoleucine–lysine–valine–alanine–valine</td>
</tr>
<tr>
<td>IL</td>
<td>ionic liquid</td>
</tr>
<tr>
<td>IMAC</td>
<td>immobilized metal ion affinity chromatography</td>
</tr>
<tr>
<td>IMEC</td>
<td>Interuniversity MicroElectronics Center</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>ISE</td>
<td>indentation size effect</td>
</tr>
<tr>
<td>ITO</td>
<td>indium tin oxide</td>
</tr>
<tr>
<td>ITRS</td>
<td>International Technology Roadmap for Semiconductors</td>
</tr>
<tr>
<td>IWGN</td>
<td>Interagency Working Group on Nanoscience, Engineering, and Technology</td>
</tr>
<tr>
<td>J</td>
<td>jump-to-contact</td>
</tr>
<tr>
<td>JFIL</td>
<td>jet-and-flash imprint lithography</td>
</tr>
<tr>
<td>JKR</td>
<td>Johnson–Kendall–Roberts</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>KASH</td>
<td>Klarsicht, ANC-1, Syne Homology</td>
</tr>
<tr>
<td>KPFM</td>
<td>Kelvin probe force microscopy</td>
</tr>
<tr>
<td>LA</td>
<td>lauric acid</td>
</tr>
<tr>
<td>LAR</td>
<td>low aspect ratio</td>
</tr>
<tr>
<td>LB</td>
<td>Langmuir–Blodgett</td>
</tr>
<tr>
<td>LBL</td>
<td>layer-by-layer</td>
</tr>
<tr>
<td>LCC</td>
<td>leadless chip carrier</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid-crystal display</td>
</tr>
<tr>
<td>LCoS</td>
<td>liquid crystal on silicon</td>
</tr>
<tr>
<td>LCP</td>
<td>liquid-crystal polymer</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>LDOS</td>
<td>local density of states</td>
</tr>
<tr>
<td>LED</td>
<td>light-emitting diode</td>
</tr>
<tr>
<td>LFA-1</td>
<td>leukocyte function-associated antigen-1</td>
</tr>
<tr>
<td>LFM</td>
<td>lateral force microscope</td>
</tr>
<tr>
<td>LFM</td>
<td>lateral force microscopy</td>
</tr>
<tr>
<td>LIGA</td>
<td>Lithographie Galvanoformung Abformung</td>
</tr>
<tr>
<td>LJ</td>
<td>Lennard-Jones</td>
</tr>
<tr>
<td>LMD</td>
<td>laser microdissection</td>
</tr>
<tr>
<td>LMPC</td>
<td>laser microdissection and pressure catapulting</td>
</tr>
<tr>
<td>LN</td>
<td>liquid-nitrogen</td>
</tr>
<tr>
<td>LoD</td>
<td>limit-of-detection</td>
</tr>
<tr>
<td>LOR</td>
<td>lift-off resist</td>
</tr>
<tr>
<td>LPC</td>
<td>laser pressure catapulting</td>
</tr>
<tr>
<td>LPCVD</td>
<td>low-pressure chemical vapor deposition</td>
</tr>
<tr>
<td>LSC</td>
<td>laser scanning cytometry</td>
</tr>
<tr>
<td>LSN</td>
<td>low-stress silicon nitride</td>
</tr>
<tr>
<td>LT-SFM</td>
<td>low-temperature scanning force microscope</td>
</tr>
<tr>
<td>LT-SPM</td>
<td>low-temperature scanning probe microscope</td>
</tr>
<tr>
<td>LT-STM</td>
<td>low-temperature scanning tunneling microscope</td>
</tr>
<tr>
<td>LT</td>
<td>low-temperature</td>
</tr>
<tr>
<td>LTM</td>
<td>laser tracking microrheology</td>
</tr>
<tr>
<td>LTO</td>
<td>low-temperature oxide</td>
</tr>
<tr>
<td>LTRS</td>
<td>laser tweezers Raman spectroscopy</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>LVDT</td>
<td>linear variable differential transformer</td>
</tr>
<tr>
<td>MC</td>
<td>microcapillary</td>
</tr>
<tr>
<td>MCM</td>
<td>multi-chip module</td>
</tr>
<tr>
<td>MD</td>
<td>molecular dynamics</td>
</tr>
<tr>
<td>ME</td>
<td>metal-evaporated</td>
</tr>
<tr>
<td>MEMS</td>
<td>microelectromechanical system</td>
</tr>
<tr>
<td>MExFM</td>
<td>magnetic exchange force microscopy</td>
</tr>
<tr>
<td>MFM</td>
<td>magnetic field microscopy</td>
</tr>
<tr>
<td>MFM</td>
<td>magnetic force microscopy</td>
</tr>
<tr>
<td>MFM</td>
<td>magnetic force microscopy</td>
</tr>
<tr>
<td>MHD</td>
<td>magnetohydrodynamic</td>
</tr>
<tr>
<td>MIM</td>
<td>metal–insulator–metal</td>
</tr>
<tr>
<td>MIMIC</td>
<td>micromolding in capillaries</td>
</tr>
<tr>
<td>MLE</td>
<td>maximum likelihood estimator</td>
</tr>
<tr>
<td>MOCVD</td>
<td>metalorganic chemical vapor deposition</td>
</tr>
<tr>
<td>MOEMS</td>
<td>microoptoelectromechanical system</td>
</tr>
<tr>
<td>MOS</td>
<td>metal–oxide–semiconductor</td>
</tr>
<tr>
<td>MOSFET</td>
<td>metal–oxide–semiconductor field-effect transistor</td>
</tr>
<tr>
<td>MP</td>
<td>metal particle</td>
</tr>
<tr>
<td>MPTMS</td>
<td>mercaptopropyltrimethoxysilane</td>
</tr>
<tr>
<td>MRFM</td>
<td>magnetic resonance force microscopy</td>
</tr>
<tr>
<td>MRFM</td>
<td>molecular recognition force microscopy</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MRP</td>
<td>molecular recognition phase</td>
</tr>
<tr>
<td>MsCl</td>
<td>mechanosensitive channel of large conductance</td>
</tr>
<tr>
<td>MST</td>
<td>microsystem technology</td>
</tr>
<tr>
<td>MT</td>
<td>microtubule</td>
</tr>
<tr>
<td>mTAS</td>
<td>micro total analysis system</td>
</tr>
<tr>
<td>MTTF</td>
<td>mean time to failure</td>
</tr>
<tr>
<td>MUMP</td>
<td>multiuser MEMS process</td>
</tr>
<tr>
<td>MVD</td>
<td>molecular vapor deposition</td>
</tr>
<tr>
<td>MWCNT</td>
<td>multiwall carbon nanotube</td>
</tr>
<tr>
<td>MWNT</td>
<td>multiwall nanotube</td>
</tr>
<tr>
<td>MYD/BHW</td>
<td>Muller–Yushchenko–Derjaguin/Burgess–Hughes–White</td>
</tr>
<tr>
<td>NA</td>
<td>numerical aperture</td>
</tr>
<tr>
<td>NADIS</td>
<td>nanoscale dispensing</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NEM</td>
<td>nanoelectromechanical system</td>
</tr>
<tr>
<td>NGL</td>
<td>next-generation lithography</td>
</tr>
<tr>
<td>NHS</td>
<td>N-hydroxysuccinimidyl</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>NIL</td>
<td>nanoimprint lithography</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NMP</td>
<td>no-moving-part</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear mass resonance</td>
</tr>
<tr>
<td>NNI</td>
<td>National Nanotechnology Initiative</td>
</tr>
</tbody>
</table>
List of Abbreviations

NOEMS nanooptoelectromechanical system
NP nanoparticle
NP nanoprobe
NSF National Science Foundation
NSOM near-field scanning optical microscopy
NSTC National Science and Technology Council
NTA nitritolriacetate
nTP nanotransfer printing

O
ODA octadecylamine
ODDMS n-octadecyldimethyl(dimethylamino)silane
ODMS n-octadecyldimethyl(dimethylamino)silane
ODP octadecylphosphonate
ODTS octadecytrichlorosilane
OLED organic light-emitting device
OM optical microscope
OMVPE organometallic vapor-phase epitaxy
OS optical stretcher
OT optical tweezers
OTRS optical tweezers Raman spectroscopy
OTS octadecytrichlorosilane
oxLDL oxidized low-density lipoprotein

P
P–V peak-to-valley
PAA poly(acrylic acid)
PAANF poly(allylamine hydrochloride)
PAPP p-aminophenyl phosphate
Pax paxillin
PBC periodic boundary condition
PBS phosphate-buffered saline
PC polycarbonate
PCB printed circuit board
PCL polycaprolactone
PCR polymerase chain reaction
PDA personal digital assistant
PDMS polydimethylsiloxane
PDP 2-pyridyldithiopropionyl
PDP pyridyldithiopropionate
PE polyethylene
PECVD plasma-enhanced chemical vapor deposition
PEEK polyethetherketone
PEG polyethylene glycol
PEI polyethyleneimine
PEN polyethylene naphthalate
PES photoemission spectroscopy
PES position error signal
PET poly(ethylencnertephthalate)
PETN pentaerythritol tetranitratre
PFDA perfluorodecanoic acid
PFDP perfluorodecylphosphonate
PFDTES perfluorodecyltriethoxysilane
PFM photonic force microscope
PFOS perfluoroocatanesulfonate
PFPE perfluoropolyether
FFT5S perfluorodecyltrichlorosilane
PhC photonic crystal
PI3K phosphatidylinositol-3-kinase
P1 polyisoprene
PID proportional–integral–differential
PKA protein kinase
PKC protein kinase C
PKI protein kinase inhibitor
PL photolithography
PLC phospholipase C
PLD pulsed laser deposition
PMAA poly(methacrylic acid)
PML promyelocytic leukemia
PMMA poly(methyl methacrylate)
POCT point-of-care testing
POM polyoxy-methylene
PP polypropylene
PPD p-phenylenediamine
PPMA poly(propyl methacrylate)
Pp polypyrrole
PS-PDMS poly(styrene-b-dimethylsiloxane)
PS/clay polystyrene/nanoclay composite
PS polystyrene
PSA prostate-specific antigen
PSD position-sensitive detector
PSD position-sensitive diode
PSD power-spectral density
PSG phosphosilicate glass
PSGL-1 P-selectin glycoprotein ligand-1
PTFE polytetrafluoroethylene
PVA polyurethane acrylate
PUR polyurethane
PVA polyvinyl alcohol
PVD physical vapor deposition
PVDC polyvinylidene chloride
PVDF polyvinylidene fluoride
PVS polyvinylsiloxane
PWR plasmon-waveguide resonance
PZT lead zirconate titanate

Q
QB quantum box
QCM quartz crystal microbalance
QFN quad flat no-lead
QPD quadrant photodiode
QWR quantum wire
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>RCA</td>
<td>Radio Corporation of America</td>
</tr>
<tr>
<td>RF</td>
<td>radiofrequency</td>
</tr>
<tr>
<td>RFID</td>
<td>radiofrequency identification</td>
</tr>
<tr>
<td>RGD</td>
<td>arginine–glycine–aspartic</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>RHEED</td>
<td>reflection high-energy electron diffraction</td>
</tr>
<tr>
<td>RICM</td>
<td>reflection interference contrast microscopy</td>
</tr>
<tr>
<td>RIE</td>
<td>reactive-ion etching</td>
</tr>
<tr>
<td>RKKY</td>
<td>Ruderman–Kittel–Kasuya–Yoshida</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean square</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RPC</td>
<td>reverse phase column</td>
</tr>
<tr>
<td>RPM</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RSA</td>
<td>random sequential adsorption</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>RTP</td>
<td>rapid thermal processing</td>
</tr>
<tr>
<td>SAE</td>
<td>specific adhesion energy</td>
</tr>
<tr>
<td>SAM</td>
<td>scanning acoustic microscopy</td>
</tr>
<tr>
<td>SAM</td>
<td>self-assembled monolayer</td>
</tr>
<tr>
<td>SARS-CoV</td>
<td>syndrome associated coronavirus</td>
</tr>
<tr>
<td>SATI</td>
<td>self-assembly, transfer, and integration</td>
</tr>
<tr>
<td>SATP</td>
<td>(S-acetylthio)propionate</td>
</tr>
<tr>
<td>SAW</td>
<td>surface acoustic wave</td>
</tr>
<tr>
<td>SB</td>
<td>Schottky barrier</td>
</tr>
<tr>
<td>SCFv</td>
<td>single-chain fragment variable</td>
</tr>
<tr>
<td>SCM</td>
<td>scanning capacitance microscopy</td>
</tr>
<tr>
<td>SCPM</td>
<td>scanning chemical potential microscopy</td>
</tr>
<tr>
<td>Scream</td>
<td>single-crystal reactive etching and metallization</td>
</tr>
<tr>
<td>SDA</td>
<td>scratch drive actuator</td>
</tr>
<tr>
<td>SECM</td>
<td>scanning electrochemical microscopy</td>
</tr>
<tr>
<td>SEFM</td>
<td>scanning electrostatic force microscopy</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>SFM</td>
<td>scanning force microscope</td>
</tr>
<tr>
<td>SGS</td>
<td>small-gap semiconducting</td>
</tr>
<tr>
<td>SIM</td>
<td>scanning ion conductance microscopy</td>
</tr>
<tr>
<td>SIP</td>
<td>single inline package</td>
</tr>
<tr>
<td>SKPM</td>
<td>scanning Kelvin probe microscopy</td>
</tr>
<tr>
<td>SL</td>
<td>soft lithography</td>
</tr>
<tr>
<td>SLIGA</td>
<td>sacrificial LIGA</td>
</tr>
<tr>
<td>SLL</td>
<td>sacrificial layer lithography</td>
</tr>
<tr>
<td>SLM</td>
<td>spatial light modulator</td>
</tr>
<tr>
<td>SMA</td>
<td>shape memory alloy</td>
</tr>
<tr>
<td>SMM</td>
<td>scanning magnetic microscopy</td>
</tr>
<tr>
<td>SNOM</td>
<td>scanning near field optical microscopy</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphisms</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SOG</td>
<td>spin-on-glass</td>
</tr>
<tr>
<td>SOI</td>
<td>silicon-on-insulator</td>
</tr>
<tr>
<td>SOIC</td>
<td>small outline integrated circuit</td>
</tr>
<tr>
<td>SoS</td>
<td>silicon-on-sapphire</td>
</tr>
<tr>
<td>SP-STM</td>
<td>spin-polarized STM</td>
</tr>
<tr>
<td>SPM</td>
<td>scanning probe microscope</td>
</tr>
<tr>
<td>SPR</td>
<td>surface plasmon resonance</td>
</tr>
<tr>
<td>SPR</td>
<td>structured programmable microfluidic system</td>
</tr>
<tr>
<td>SPS</td>
<td>spark plasma sintering</td>
</tr>
<tr>
<td>SRAM</td>
<td>static random access memory</td>
</tr>
<tr>
<td>SRC</td>
<td>sampling rate converter</td>
</tr>
<tr>
<td>SSIL</td>
<td>step-and-stamp imprint lithography</td>
</tr>
<tr>
<td>SSRM</td>
<td>scanning spreading resistance microscopy</td>
</tr>
<tr>
<td>STED</td>
<td>stimulated emission depletion</td>
</tr>
<tr>
<td>STH</td>
<td>scanning thermal microscope</td>
</tr>
<tr>
<td>STM</td>
<td>scanning tunneling microscope</td>
</tr>
<tr>
<td>STORM</td>
<td>statistical optical reconstruction microscopy</td>
</tr>
<tr>
<td>STP</td>
<td>standard temperature and pressure</td>
</tr>
<tr>
<td>STS</td>
<td>scanning tunneling spectroscopy</td>
</tr>
<tr>
<td>SUN</td>
<td>Sad1p/UNC-84</td>
</tr>
<tr>
<td>SWCNT</td>
<td>single-wall carbon nanotube</td>
</tr>
<tr>
<td>SWNT</td>
<td>single-wall nanotube</td>
</tr>
<tr>
<td>T</td>
<td>tilt angle</td>
</tr>
<tr>
<td>TASA</td>
<td>template-assisted self-assembly</td>
</tr>
<tr>
<td>TCM</td>
<td>tetracyysteine motif</td>
</tr>
<tr>
<td>TCNQ</td>
<td>tetracyanoquinodimethane</td>
</tr>
<tr>
<td>TCP</td>
<td>tricresyl phosphate</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscope</td>
</tr>
<tr>
<td>Ti</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>TIRF</td>
<td>total internal reflection fluorescence</td>
</tr>
<tr>
<td>TIRM</td>
<td>total internal reflection microscopy</td>
</tr>
<tr>
<td>TLP</td>
<td>transmission-line pulse</td>
</tr>
<tr>
<td>TM</td>
<td>tapping mode</td>
</tr>
<tr>
<td>TMAH</td>
<td>tetramethyl ammonium hydroxide</td>
</tr>
<tr>
<td>TMR</td>
<td>tetramethylrhodamine</td>
</tr>
<tr>
<td>TMS</td>
<td>tetramethylsilane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TNT</td>
<td>trinitrotoluene</td>
</tr>
<tr>
<td>TP</td>
<td>track pitch</td>
</tr>
<tr>
<td>TPE-FCCS</td>
<td>two-photon excitation fluorescence cross-correlation spectroscopy</td>
</tr>
<tr>
<td>TPI</td>
<td>threads per inch</td>
</tr>
<tr>
<td>TPMS</td>
<td>tire pressure monitoring system</td>
</tr>
<tr>
<td>TR</td>
<td>torsional resonance</td>
</tr>
<tr>
<td>TREC</td>
<td>topography and recognition</td>
</tr>
<tr>
<td>TRIM</td>
<td>transport of ions in matter</td>
</tr>
<tr>
<td>TSDC</td>
<td>thermally stimulated depolarization current</td>
</tr>
<tr>
<td>TTF</td>
<td>tetrathiafulvalene</td>
</tr>
<tr>
<td>TV</td>
<td>television</td>
</tr>
<tr>
<td>VBS</td>
<td>vinculin binding site</td>
</tr>
<tr>
<td>VCO</td>
<td>voltage-controlled oscillator</td>
</tr>
<tr>
<td>VCSEL</td>
<td>vertical-cavity surface-emitting laser</td>
</tr>
<tr>
<td>vdW</td>
<td>van der Waals</td>
</tr>
<tr>
<td>VHH</td>
<td>variable heavy-heavy</td>
</tr>
<tr>
<td>VLSI</td>
<td>very large-scale integration</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>VPE</td>
<td>vapor-phase epitaxy</td>
</tr>
<tr>
<td>VSC</td>
<td>vehicle stability control</td>
</tr>
<tr>
<td>XPS</td>
<td>x-ray photon spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>x-ray powder diffraction</td>
</tr>
<tr>
<td>YFP</td>
<td>yellow fluorescent protein</td>
</tr>
<tr>
<td>Z-DOL</td>
<td>perfluoropolyether</td>
</tr>
</tbody>
</table>
Springer Handbook of Nanotechnology
Bhushan, B. (Ed.)
2010, XLVIII, 1964 p. 1577 illus. in color. With DVD., Hardcover
ISBN: 978-3-642-02524-2