Chapter 2
Technogenic Conditionality in Development of Geosystems in East Kazakhstan

2.1 Allocation Methods of Technogenic Geosystems

2.1.1 Theoretical Substantiation for the Organization of Geosystems in East Kazakhstan

Geoecology or landscape ecology is a science located at the intersection of two sciences as geography and ecology, considering the ecology of geographic systems or environment of human activity within the boundaries of natural and territorial complexes of different rank.

Theoretical foundations of geneecology are determined by the regularities in the development of geographical envelope and the Earth biosphere. The biosphere, being a part of the geographical envelope, differs from it by less power and high concentration of life (Chigarkin 2003; Dzhanaleeva and Bayandinova 2004).

Depending on the methodological approaches and scientific and practical purposes, the objects of environmental studies can be either geosystems (in biology) or geosystems or landscapes (in geography). Geosystem or landscape was chosen, since spatial differentiation of the geographical envelope is due to combination of many natural components, the main object of which is the geoosystem, and spatial division of the biosphere is based on its differentiation by our object of study (Nekhoroshev 1934; Grebenshchikov and Tishkov 1986).

Structurally, landscapes are analyzed in two ways: on the one hand, as natural complexes consisting of local morphological units, on the other, as elements of larger regional units (provinces, natural zones, countries). In other words, the internal and external structure of landscapes is taken into account.

In view of the fact that geographical landscape is internally non-uniform, the question arises which of the morphological parts, their components, first of all should be taken into account, assuming them as the basis of classification. Here the notions of dominant, subdominant and other subordinate morphological units of landscape. Properties of the dominant tracts in the landscape are recognized as the
main subject of co-positional typological analysis. Subdominant tracts can also provide valuable information for landscape diagnosis, but they are taken into account, secondarily.

Structural and genetic classification of landscapes can not fail to take into account their regional division. The influence of specific geographical position (place) on the earth’s surface always affects the history, genesis and modern structure of any landscape. For this reason, the elements of regionalism are inevitable in landscape-geographical classifications. They are given a regional-typological character (Demek 1977; Krauklis 1979, 1989).

The classification of multistage landscapes consists of hierarchy on taxa, from the top to bottom more and more concretizing the typological characteristics of geosystems. Each taxonomic level corresponds to the strictly defined classification feature, in formal logic designated as the unity of basis for concepts’ division.

The set of classes and subclasses of landscapes that follow the classification ladder below depends on the relief morphstructure. Class of flat landscapes in region completely represents the outlying terraces, and the mountainous ones—on low-mountain, middle-mountain and high-mountain landscapes. The division of landscapes into classes and subclasses reflects one of the most important aspects of landscape envelope—its layering, caused by the geotectonic movements of the earth’s crust. It is directly reflected in the longitude of landscape, which, in turn, affects water regime and geochemical specificity of geosystems.

In the class of flat landscapes, accumulative auto orphic and semi-hydro orphic geosystems develop. For the elevated plains, auto orphic denudation landscapes are characteristic, for the low drainage ones—neo-elluvial (paleohydromorphic), for the undrained plain interfluves and bottoms of river valleys and lake basins—semi-hydromorphic and hydro orphic. In small hill landscapes the trans-elluvial geosystems are dominating.

Manifestation of zonal or intrazonal features of landscape directly depends on the degree of automorphicity-hydromorphism. Steppe placers are always auto orphic. They are standard of natural zoning. At the same time, hydro orphic lowland positions are usually occupied by intrazonal—marsh, meadow, solonetzis-saline geosystems. However, we emphasize that intrazonal landscapes are also zonal, but their zonal nature is distorted by increased hydromorphism (ground, muddy, and floodplain). As a result, in a single family and in one class of landscapes, both zonal and intrazonal geosystems can simultaneously develop in the conditions of different water regimes, forming mosaic of landscape types.

The type of landscape is one of the main classification units. The basis of the concepts selection is soil-geobotanical characteristics at the level of soil types and classes of plant formations. If we confine ourselves to the early stages of auto orphic landscapes aggregate, then the landscape type is fairly accurately geographically correlated with the natural zone within single physical-geographical country. However, next to them, in the same zone, but in hydro orphic positions, one can identify saline-meadow, marsh-meadow and other intrazonal types of landscapes of the same family and class. Together with auto orphic-zonal, they

The types of landscapes consist of subtypes. The most obvious classification characteristics of subtypes for auto orphic landscapes are their inherent soil subtypes and subclasses of plant formations. Subtypes of zonal landscapes correspond territorially to adjacent subzones.

Below in the hierarchy of typological taxa follow genera and subgenera of landscapes, characterized by the geological and geomorphologic features. Morphology and genesis of relief is an indicator of landscape kind; litho logical characteristics of surface sediments are indicator of the landscapes subgenus. It is expedient to divide the genera of landscapes into two large aggregates: (1) landscapes of interfluvies; (2) landscapes of river valleys and lake basins.

Particular attention is drawn to the landscapes systematic position of high—third (Middle Pleistocene) above-floodplain terraces of river valleys in flat areas. According to hypsometric position, and the most important auto orphic, neo-alluvial nature, they practically do not differ from the ancient alluvial and lacustrine-alluvial plains of the interregional, and therefore are included in the latter composition. In composition of valley and lake-hollow landscapes of the plains, there are natural geosystems of low—the first and second (late Pleistocene) above-floodplains and flood plains, always hydro orphic to some extent. Another thing is the mountain-congested areas of the Ertis river basin, where the entire complex of over pristine terraces, including high terraces, is strictly localized in the river valleys (ancient and modern), and according to the classification it belongs to the category of valley natural geosystems.

At the level of landscapes subgenus, the litho-factor plays an important role. It defines the diversity of the steppes edaphic variants—from loamy and loess (pelitophytic) to psammophyte, petrophytic, halophytic, calciferous, etc. According to G.N. Vysotsky, it is customary to consider the forest-loamy variant of steppe as the steppe model zone. Sandy or stony water dividing plain can not be recognized as steppe placer, since they represent the corresponding lytho edaphic steppe variant. The impact of lytho-edaphic factor sometimes becomes so strong, that it leads to emergence of extra zonal landscapes among steppes.

One of the last stages of hierarchical ladder on typological taxa is the type of landscapes. It represents a set of natural complexes, similar in composition to the dominant tracts in them. Of course, such structural proximity assumes the commonality of their evolution and genesis.

Let’s remind that under laws of hierarchy, the characteristics of all higher taxons have the defining value for subordinate. As a result, each type (morphological option) of landscapes receives its own individual characteristic.

Retrospective analysis of theoretical concepts concerning landscape science of the last years claims the methodological geosystems approach to take place in studying the large physiographic regions. Systematic character of the most geographical envelope follows from the fact that communications between the components are stronger, than communications with the external environment.
Geosystem is an open system, exchanging substance and energy with environment. The super openness of geosystems river basin is caused by constant dependence of superficial drain elements on rainfall, which are various in different parts of pool. It defines also liquid intensity and firm drain of substances, having the uniform direction, and connected with difficult transfer processes of substance (an erosion, accumulation, etc.).

Transition from one spatially—large-scale level to another in the conditions of pool is followed by the high-quality reorganization of natural bodies, physical interaction ways and creates thorough geosystem. So, river basin geosystems from upper parts to delta are united with general process of the movement and transfer of the weighed particles, as it is one of genesis and modern functioning of geosystem factors.

One of the best conceptual decisions in system approach was identified by V.B. Sochava (Nikolaev 1978; Sochava 1978)—“geosystem can be found as a system of interaction between geographical spheres with hierarchical structure and functional similarity and unity of spatial communications”. On basis of this definition the geosystems of all river basins can be considered as a united complex, geographically constructed, located as equals, but rather independently functioning simple and difficult natural systems, and the complexity principle is “implemented through identification of all taxons”.

Structurally-functional links of geosystems in geosystem classification in the river basin rely on the principle of thorough systemacity. As the united geosystem, a river basin is the super difficult, exoregulated, impulsively dynamic geosystem limited to two special types of surfaces: threshold—vertical (for example, glacial zone) and contact—horizontal (river floodplain). When studying geosystems of internal drain it is necessary to consider, in our opinion, non-traditional component blocks, since besides lithogenous basis, differentiating factor is the superficial drain, also components of macro—and micro substratum levels of geosystems. We refer parameters of water and thermal balance, efficiency and productivity of phytoweight to them. We consider geosystems as united midland, formed by drain rivers, as par genetic and pardynamic complexes in conditions of amplifying moistening deficiency owing to natural and anthropogenous factors. These natural complexes develop under the influence of two interdependent, leading factors of differentiation—lithogenous basis and drain. These and other physiographic conditions, forming a river basin, allow defining the region as united megageosystem.

Super complexity, impulse dynamism, exoregulating feature of low rank geosystems at all levels of geosystem organization from all macrogeosystem according to V.N. Solntsev, are proved by three main types of geosystem structures: (1) vector, (2) cellular, (3) is potential types of geosystems structures. Such polystructure of geosystems can be described as existence in complex organizations pools of circulating, radiation characteristics which are fundamental in system of interaction—the plain—the mountain, and owing to existence of “barrier effect”, greenhouse effect, and also other difficult geographical processes arising in the conditions of one macrogeosystem with universally oriented geodrain.
Genesis of three structural types is connected with the types of physiographic processes happening in the pool: the first type of structure with external (sunlight) that is defined by inflow of solar energy, vertical currents, in general, caused by the area latitude, a northern and southern exposition, the kettle-hole and water separate provision of geosystems. The second type is connected with intrathecal (circulating). To this belongs geosystems of low-hill terrain and foothills subgeosystems. The third one is intra terrestrial (gravitational and tectonic processes), also geosystem of drain formation zones.

This concept generalizes a number of the long ago established geosystems representations: independence of zone and a zonal geosystems differentiation by Isachenko (1981), genetic relationship of high-rise and width zonality by A.D. Armande (Armand 1975), basin forms existence of geosystem orderliness by F.N. Milkov (Milkov 1967). Theoretical concept of links between these three types of geosystem structures is well lit in literature by Solntsev; etc. This position is also approved by A.Yu. Reteyum (Solntseva 1982) in the “monistic concept”, where polystructural approach in researches of geosystems is interpreted. Macrogeosystem of the river basin is considered by us as the geosystems, which has territorial stability at the expense of a lithogenous framework with high plasticity of a biota, and connected with dynamics of superficial drain (Iberla 1980; Jeffers 1981).

In the conditions of East Kazakhstan river basins, usual lithogenous-petrographic characteristic of rocks is insufficient for their backbone role clarification. Structure and condition analysis of territorial rocks set bedding is necessary. A.N. Perelman (Reteyum 1975) put forward the idea about monolithic and heterogeneous geosystems, understanding under the second geosystems formed on various rocks: A.G. Isachenko (Perelman 1964; Isachenko 1974),—“geomorphologic complexes”. According to N.A. Solntsev these representations are inevitably closed with the known definition of geosystems.

In contexts of river basins, there can be often met combination of Paleozoic metamorphic and intrusive breeds. Significant areas are occupied with friable quaternary deposits. Combination of various lithogenous-structural complexes defines mosaic alternation of radical and friable education sites that is one of mainstream fundamental factors.

Geological substratum, which is located below maternal breed, exerts impact on evolution of geosystems and has another time characteristic. In this sense the geological substratum is not seasonally functioning part of geosystem. Geological substratum in relation to concrete geosystem should be called the geological buildups, stable in characteristics within a year and, nevertheless, predetermining main features of a structure of the higher in the taxonomical row.

If geographical buildups are considered in the highest units as a direct functioning site, then for the lowest unit it acts as a background, condition, and substratum. The question of a lithogenous basis and substratum is connected with a vertical borders problem of physiographic units—particularly complex buildups.

Lithogenous basis combines local features of air, water, soil organisms, and mining masses, which do not have relations with modern geographical coordinates.
Geological structure has a significant effect on the form of valleys and longitudinal river profile, the structure of the alluvium, and on the stability of the river course. The modern tectonic movements influence placement of sites, which are limited and have free development of channel changes, prevalence of deep and side erosion.

Gravitational forces, being the indicator of substance and energy reorganization, determine the altitudinal zonality developed in subgeosystems of pool. Regularities of altitudinal zonality formation develop the geosystem tiers, representing extremely important regularity of the physiographic mountains differentiation. In the basins of the Altai rivers, mountainous geosystems are divided into three traditional tiers—low, average, high. These three main tiers reflect formation stages of a mountain construction, age of its separate parts, intensity of tectonic movements, as well as character of an exogenous partition. From here two conclusions follow: the first is phenomenon of a layering has to be the basis for geosystems differentiation; the second is layering changes of a mountainous terrain concerning the studied region involve changes of bioclimatic components.

In the geosystems of subdued mountains and low-hill terrain basin of the river Ertis, different genetic breeds are territorially interfaced. Besides, the contrast of the modern geomorphologic processes connected with a drain is especially big and obvious. The more physical distinctions between breeds making a complex, the sharper and more certain become the border of morphological structures and textures. Low-hill terrain and foothills of the Altai act in the form of an independent lithogenous basis and, being strongly average on material structure, make an impression about the created new lithogenesis—a substratum for the soil and biota.

The role of superficial drain is obvious here: superficial washout and glacial waters created this relief as a result of bias. Foothills geosystem belongs to the class of mountain plains as in the tectonic plan these territories belong to Paleozoic age. Foothills are an initial step of a mountainous terrain morphological layering that finds reflection in allocation of the foothill geosystems subclass. Therefore, both a mountain part of the Ertis river basin, and the foothills of main Altai ridges are considered to be a united pargenetic geosystem.

In our researches exogenous processes play a large role in the intrasystem differentiation, since processes of a substance geographical drain (substance streams, underground drain, geochemical drain, and superficial drain), its character and force depend on work of a superficial drain.

Sediment processes of proluvial-alluvial material form a lithogenous basis of inflow courses concerning the above-mentioned rivers. This process happens every second and for many centuries, but as soon as at the same time at least one of lithogenous basis and geological substratum components will change, then the lithogenous basis acts as the differentiator (and sometimes the integrator) of geosystem structure. Thus, conservatism of lithogenous system is very relative in the conditions of the Ertis big and small river basin.

Within the framework of channel changes free development, weak stability of friable breeds composing a rivers bed and small alluvial course causes mainly a stream role in course processes (the stream operates the course). Such courses are
the same for all zones of drain dispersion. In the conditions of breeds distribution, resisting to washout, which are rocky, connected, plastic, stream copes with the course. It is distinguishing for zones of drain transit. In the first case widely inundated courses are formed, in the second one there formed cut with valleys, following tectonic violations.

By virtue of channel, slope and ravine processes movement of deposits coming to the river can be carried out. Character of deposits and their power play an important role in functioning of geosystems concerning alluvial and deluvial-proluvial covers of all basin geosystems. The main part of deposits drain is formed on reservoir, representing a zone of drain formation. At the same time, share of the last, in general deposits drain of rivers reaches 60%, though from everything the material which is washed away from slopes on reservoir this size makes more than 20%. The most part of products concerning soil erosion settles at the bottom of slopes, which are defined as a drain feathering-out zone.

Channel processes, developing in the region have specific provincial features, and in general define the current state of geosystems. They are closely connected with backbone factors and by modifying, also change factors.

Channel processes are zoned, and in general also define zone signs of geosystems. Key parameters of geosystems are thermal and water balances, and efficiency correspond to laws of altitudinal zonality in the geosystems, functioning in formation zones and drain transit, also zone signs are clearly traced in feathering-out zones and drain dispersion. Such interconditionality is characteristic for all basins of the river Altai.

Channel processes happening in the Ertis river basin have more considerable interconditionality to high-rise belts, and less to line zone, which are primitive and muffled here.

Influence extent to the channel of physiographic factors depends on the channel deformations scale and on the sizes of channel forms. So, on the main drain of the Ertis river are featured by intrazonal geosystems, integrating in themselves influence of zone lines. In small rivers basin, channel mode is defined by lines and excludes an intrazoning. Often the intrazoning of inundated geosystems is subordinated to zone signs.

As indicators of major factors concerning channel processes, geological and geomorphologic conditions of channel formation, channel figuring processes and channel stability are accepted. Differentiation of the main types of channel process allows dividing geosystems into: (a) geosystems of the river and its basin flat part; (b) geosystems of Semi-mountain Rivers—in low-hill terrain and foothills; (c) geosystems of Mountain Rivers. In mountainous areas the altitudinal zonality of channel processes defining natural change of one type by another is evident.

In the geosystems, assigned to the main course of the Ertis river, genetically different water streams are revealed—not channel, flowing down from slopes; the streams, defining concentrated accumulation in the form of carrying out cones; constantly channel, forming river valleys during geological history. All of them play a different role in differentiation, functioning and dynamics of the geosystems concerning the studied region. The role of water streams in the geosystems
development is stipulated not only by fact that the first two types of streams (not channel and temporarily channel) relate to agents of near transfer of solid material (deposits, the weighed particles, etc.), and the 3rd type to agents of distant transfer, but also by where hydrodynamic zones the geosystem is spatially placed—in a zone of drain formation, in a transit zone or in a zone of drain carrying out, in a zone of dispersion or accumulation. The last one depends on a relief that defines the intensity or absence of linear erosion.

River basin of the Ertis created in Altai mountains is a product of all interaction factors, forming macrogeosystem, and depending on conditions of development of the latter, the “hydrological” (erosion normal) link of physiographic processes has to change as well. Modern backbone processes of the basin are closely linked with developments of the water currents, making the top links of hydraulic network.

All phenomena and processes, connected with the interactions of the streaming water and spreading rocks, represent united erosive and accumulative process. In this regard in basins of the above-mentioned rivers it is possible to separate geosystems with the dominating non-channel streams, formed under the influence of waters, flowing down from the slopes, making plane erosion and not concentrated accumulation. Other geosystems function in the conditions of plane erosion. Parameters of water and thermal balance are steadier here, and that affects also stabilization of bioproductivity.

Temporary channel streams, carrying out the linear (ravine) erosion and its development represent a self-excited process and concentrated accumulation in the form of carrying out cones characteristic for many basin territories. Especially they are distinctive for zone of drain dispersion concerning the small river basin and low-hill terrain regions. Upper courses of all rivers have the constant channel streams, formed during geological history with well expressed river valleys constantly punching the forms of channel relief created by them.

Accumulative processes are distinctive for lower reaches of the basin, and also for zones of drain dispersion. Erosive processes dominate in the Uba and Ulba river basins. Generally, erosive and accumulative process is the only one in many river basins of the III and IV order playing the predominating role in the development and dynamics of geosystem.

Water streams are created under certain conditions; on which combination of water content size, mode, and longitudinal bias of courses, formed structure of alluvial rivers are depended. All this defines erosion intensity on slopes and channel forming activity of constant streams. Erosive-accumulative and channel processes are the unified whole, depending on the nature of reservoir geosystems and it is also impossible to consider them separately from the river. Therefore, also their reservoirs have to be studied in close interrelation and interconditionality.

Tectonic and climatic features influence unequally a fluvial denudation of geosystems’ zones drain formation, therefore depending on a combination of a change tendency concerning these factors, opposite relief-forming processes can develop at the same time within the same river basin. Geosystems of zones drain
formation concerning the Altai main rivers function in the conditions of different genesis temporary channel streams and differently react to changes of climatic elements.

Facial heterogeneity of the geosystems concerning zone of drain dispersion is connected with the formation of bald mountains, swamps, hills and ravines.

Erosive and accumulative activity of the Altai rivers is connected with expenses of energy stream between which ratios is approximately defined by the work of water consumption on a bias and, therefore, equally reacts to fluctuations of climate, leading to change of water content stream, degree of drain unevenness, etc., and the tectonic movements directly causing reduction or increase in a longitudinal bias. The water movement is connected with energy transformation and ability of continuous change of the hydraulic stream characteristic. Therefore, the degree of geosystems stability in different zones of drain is various, and depends on the aforesaid.

Processes of deep erosion or accumulation depending on the factors causing them, extend down (transgressively) or up (regressively) on a stream, and also can be shown at all river length. Erosion depth gives also intensive side erosion, which can be shown also in an accumulation zone on slopes. The degree of geosystems variability of the Ertis river basin, characteristics of transformational ranks of biota and soil depends on deep erosion intensity.

In the inundated geosystems in connection with the abundance of the latest years’ water and global warming of climate, the erosion basis has been changing. Increase in erosion basis owing to anthropogenous factors and increase in a glacial drain have increased the level of ground waters in recent years, and that was reflected in a bioproductivity of geosystems flooded territories, in haymaking and postural grounds, the above flood-plain terraces, which are formed on alluvial-proluvial deposits.

The intensity of above-named processes caused by anthropogenous factor creates a peculiar complexity, mosaicy of inundated and valley geosystems of the Ertis river basin.

2.1.2 Principles of Identification and Differentiation of Geosystems in East Kazakhstan

In the systemic researches of basin territories there appeared two directions: planetary (regional) and typological (intrasystem). Regional and typological geosystems function in conditions where radical and lateral links of substance streams have identical value. Links of these streams are different, unstable in macrogeosystem time, i.e. stability of equilibrium state is various. The researcher needs to consider geosystem not only as link of natural components. It is proved that this connection becomes interrelation, only in case interaction function begins. This scientific direction is developed in V.B. Sochava’s works.
The second direction recognizes only lateral (gravitational) components of connections directed from a watershed to basis and along erosive forms of relief. The essential moment of developing gravigen geosystems is the tension and capacity of gravitational streams at the corresponding stages of substance circulation (Solntsev 1975).

From the systemic positions both approaches are correct, their equivalence is caused by “polydegree of structure” according to V.N. Solntsev and “polysystemacity” according to G.S. Makunina (Makunina 1980, 1983).

Geosystems of the Ertis river basin are paragenetic natural and territorial complexes, combined by unity of vertical and horizontal currents of substance and energy, i.e. mass and energy exchange and also formed in the conditions of one litogenesis and one direction of geographical drain.

A.D. Armand determines geosystem as “any set of the interacting elements”. The system is capable to be divided into subsystems and, in turn, can be included in the highest order.

All river basins of the Ertis are defined by us as united macrogeosystem, which structures are intergeosystems and subgeosystems. Existential connections of channel formative processes are essential in mesogeosystems development.

Functional integrity of each subgeosystem is defined by development of vertical material and energetic circulations under the influence of atmosphere energy and biota activity, imposing of small substance circulations on gravigen streams and partial involvement of the latter in biological and atmospheric migration and energy. Each subgeosystem is presented by river basins—inflows of the III-IV order, the so-called small rivers (Uba, Ulba, etc.).

The river basin is the typical gravigen geosystem—orographically limited, functioning as a united natural body in which division of matter is caused by realization of gravity energy put in it. Potential size of energy weight is defined by difference of absolute heights and the types of relief (topography).

Dynamic activity of gravigen geosystems is shown in intensity of material and energetic streams, determined by surface biases, their lithology and bioclimatic situation. Bioclimatic conditions together with amplitude of alignment surfaces or absolute altitudes define higher dynamic activity in the gravigen subgeosystems with more steep slopes, pliable to aeration and demolition by breeds. In sub-geosystems, functioning in different bioclimatic conditions, higher dynamic activity is inherent in the increased moistening subgeosystems.

So, at one hypsometric level functioning of the Kyzulsy-Taintinsky and Sharsky subgeosystems differ from each other visibly. The first is presented by the dense vegetation, which is a mechanical barrier on the way to transit substances, their potential forming a biogenous barrier, strengthening material energy potential of all subgeosystem. Capacity of gravitational streams in Sharsky subgeosystem depends on amount of precipitation, lithologic properties of breeds.

Thus, the hierarchy of gravigen geosystems has been defined. It is the largest unit of all subgeosystems main inflows, orographically limited by space, accurately delineating gravigen geosystems of III and IV inflow orders (Fig. 2.1).
Within the last ones, gravigen systems of slopes are functionally complete, which are complicated linearly-cascade gravigen systems of ravines, temporary and direct water currents. Linearly-cascade gravigen systems are the integrated geosystems, symmetrically and consistently uniting material and energy stream crossed by gravigen geosystems of slopes and small river basins.

Structural connection of the gravigen geosystems are geosystems of the first topological level type, in which tension and capacity of through and “gravitational” streams is the power and migration activity of the substance. However, the linearly—cascade gravigen system can not be a part of the gravigen geosystems, and take an autonomous position in relation to them (for example, a plakor), and in this case geosystems of slopes and erosive forms are “open” for the intake of substances and energy from watersheds of the first type geosystems.

F.K. Milkov called geosystems with the unidirectional streams of connections in their borders—par dynamic, and the geocomplexes composing them—par genetic, i.e. par genetic complexes are characteristic for all geosystems, development and functioning of which is referred to a superficial drain. But when geosystems are formed on different breeds, and sometimes in the conditions of different natural zones, definition par genetic is not appropriate, since it contradicts a concept of par ageneses (Milkov 1972, 1981).
On this basis, structural geosystems parts of different genesis should be related to different par genetic groups. Such gravigen geosystems also include the basin geosystems created by river sources.

By the type of intensity of the substance movement and their power mass exchange and degree of stability, we have distinguished hypo dynamic and hyper dynamic geosystems, being compounds of sub—and intergeosystems (Bokov 1977).

Domination of fading processes is the characteristic feature of hypo dynamic macroteosystems with the weak movement of substance streams. The insignificant anthropogenous factor can quickly bring it out of an equilibrium state. Hypodynamic microgeosystems are characterized by heavy traffic of substance, their power activity quickly leaves a natural cycle since it is in a constant exit of substance, power tension is weak or absent. Such geosystems can quickly transform to other genetic row.

The general interconnecting signs are characteristic for all geosystems of the Ertis river basin: continual and discretised in the existential-time relation; hierarchical; multicomponent and dynamic; also they are the system of interacting morphological parts.

Distinguishing of connection types between geosubsystems and intergeosystems of basin defines their geographical unity with territorial limitation and functional integrity inherent in them. Intercomponent and intergeosystem links in all the Ertis macroteosystem refer to it (Ioganson 1970).

Thus, large taxonomical units of all Ertis macroteosystem are revealed as united geosystems with the universally oriented substance movement in the area of drain from a watershed to the basis of erosion, and are defined as sub-intrageosystem. On zone of drain tanzit in valley of the Ertis river we have revealed four subgeosystems: Ertis, Ertis-Shulbin, Ertis-Bukhtyrma, Kara-Ertis-Zhaysan (Bayandinova 2005a, b; Dzhanaleeva 1998) (Fig. 2.1) (Bayandinova 2003a–e).

In the Ertis macroteosystem, created by geosystems, connected with the basin of the Ob river large inflow, taking into account the typification of landscapes, also seventeen subgeosystems have been distinguished, each of which has been formed and is functioning in the conditions of the III-IV order river inflows relatively to the main course.

Each of them is divided into four zones linked to superficial drain: geosystems of drain formation zone; geosystems of drain transit zone; geosystems of drain feathering-out zone; geosystems of drain dispersion zone. Geosystems of drain formation include the geosystems united by lines of highlands and represent intensive compartmentalization massif of the Alpine shape. They are put by granites, gabbro, gradiorite, effuziva and their tufa, effusive and sedimentary breeds, rare sandstones, slates, marble, and focused almost in the width direction according to general direction of geological structures and zones of large technical violations. Ridges have received a modern outline as a result of tectonic movements, which were more active at the end of Paleogene and have been continuing so far.

General character of highlands compartmentalization of all Ertis macroteosystem extends also to backbone processes.
High position of glaciers defines the most complicated structure of geosystems, unlike the basins of those rivers, where freezing marks at the lowest. The development of geosystems happens in the conditions of semi-humidified climate here. Geosystems of transit zone are related to the middle and low-mountainous terrain and are formed in the conditions of terraces, leveled terrace shaped surfaces on slopes and in the bottoms of mountain hollows with traces of ancient freezing. The strengthened erosive activity with expressed alternation of the glacial accumulation periods of deposits with the periods of erosive activity strengthening in rivers are characteristic for river basins of the Shar, Ulba, and etc.

The genetic unity of such geosystems is obvious. The main characteristic processes, influencing backbone is colluvial accumulation, soliflual processes, the expressed benching, slope accumulation. Morphological structure of geosystems on such sites is also complex and signified by transition state from mountain-steppe upland geosystems to shrubby-rich in cereals with forest geosystems, and to an ephemeral rich in cereals—shrbby, formed along the course and in a high flood plain.

The geosystems of drain feathering out zones are difficult for studying in connection with strong anthropogenous changes.

The powerful layer of alluvial-proluvial deposits, their joint with the material of terrace above flood-plain creates difficult character of soil formed breeds concerning carrying out cones.

In the friable deposits of carrying out cones the level of ground waters are high, some the mountain river courses are feathering out again in that zone.

The geosystems of drain dispersion zone function in the conditions of spread-eagle drain, develop in the conditions of insignificant biases. Development of geosystems happens in the conditions of insufficient moistening.

Thus, in connection with the aforesaid, a major factor of the Ertis river basin geosystems organization is the nature of interrelations of litogenesis and superficial drain, as well as the uniting properties of gravigen, which determines their stability and consistency in space and time.

Huge scales of industrial and agricultural production of the Ertis macro-geosystem strengthen a negative ecological situation. Annually more than 250 million m$^3$ of sewage is dumped in the river Ertis. Pollution of these waters on the weighed toxic substances exceeds by 3, 6 times as to maximum allowable concentration. Dumpings from the city treatment facilities of Ust-Kamenogorsk, Semey are the main source of the Ertis river pollution (Bayandinova 2005a, b). Heterogeneity of modern technical equipment in the conditions of market economy, widely extended injurious, irrational use of natural resources, led to the adverse natural and anthropogenous processes in big areas. All this has brought to the phenomenon which has received the name of “ecological crisis” in the scientific literature. The problem of geosystems protection from negative processes of technogenesis became one of the major urgent practical and natural—scientific problems in the Republic of Kazakhstan, where geosystems of East Kazakhstan demand a detailed geoecological assessment.
2.1.3 Characteristic of Geosystems

The Ertis macrogeosystem which is compound of Karsko-Ob megageosystem in territory of the Republic of Kazakhstan is presented by four subgeosystems, which unite basins territories of this river numerous inflows, constant or temporary drain of which is directed towards the Ob River. The Ertis, Ertis-Shulbinsky, Ertis-Buktyrminsky, Ertis-Zhayansky are related to them.

Northeast watersheds of the Ertis-Buktyrminsky subgeosystem are presented by the Koksuysky ridge and Listvyaga, which morph structure is close to the Alpine lines. The Ertis, Uba, Ulba inflows originate from the southern slopes of the Koksuysky ridge, which forms Actually-Ertis subgeosystem. The rivers Buktyrma and Naryn which basins form Ertis-Buktyrminsky subgeosystem flow along the southern slopes of the Listvyaga and Ulbinsky ridges.

The Kurshym inflow originates from the southern slopes of the Naryn ridge (absolute height is 3375 m). The river Kaldzhir follows from the mountain lak which is the right inflow of Kara Ertis, and its drain is regulated. Basins of these three rivers create Buktyrminsky, Ubinsky and Kurshymsky subgeosystems, and their functioning depends on physiographic processes of all Ertis macrogeosystem (Bayandinova 2005a, b; Dzhanaleeva and Bayandinova 2003).

The watersheds of the Ertis macrogeosystem southern suburbs are occupied with the massif of Tarbagatai ridge, which has the insignificant amplitudes of geotechnic movements. Southwest watersheds are provided by Shyngystau low-hill terrain (Edrey, Arkat, Murdzhik, etc.). Northeast part of intrageosystem is occupied with suburbs of the West Siberian lowland—the Kulunda Steppe.

In tectonic relation the southern part of the Ertis macrogeosystem represents uplifted pool of the neogene-downfourth raising, formed on the place of her cynic constructions. In Pleistocene these territories have undergone a freezing. Northern suburbs of the region’s macrogeosystem belong to the West Siberian plate.

The mountains of strongly dissected relief of southern region suburbs gradually passes into wavy and hilly plains of the Ertis average current. Absolute marks vary from 235 (firth of the river Uby) up to 2000 m (at tops of “snow covered mountain peak”).

The surface of the Ertis macrogeosystem, hollow inclined to the north, has very difficult relief. Often flat manes alternate with gentle slopes, sometimes with the small closed lowlands located in chains. The largest hollows are connected with tectonic motions (Lake Teniz).

Neogene deposits are presented by two suites—the lower Miocene (the Aral suite) and average Miocene (the Pavlodar suite). The first one is of lake origin—the salted green clays with plaster, the second consists of lake-marsh and alluvial rainfall of red color with plaster. Quarternary deposits are widely presented, their power depending on local conditions of accumulation and destruction vary from 0 to 100 m. Most often we can meet sandy, alluvial deposits, lake and marsh accumulation of different mechanical structure and integumentary yellow-brown carbonate loams of forest shape.
Underground waters are fresh. Lime stones of kembro-silur are the most water-laden, where waters are of fissure-karst type and rigid. Detrital glacial and alluvial deposits are also water-bearing. Reservoir waters in alluvial columns of ancient river valleys are characteristic. Waters have weak chloride-sodium salinization.

The most various soil climatic conditions are characteristic for the Ertis macrogeosystem. In the Ertis-Zhaysansky subgeosystem with very dry north wind and domination of ephemeral desert vegetation, the appraising points of soil climatic conditions are less than 40. Mountain territories of east suburb subgeosystems concerning macrogeosystem belong to a damp mountain agroclimatic zone and are estimated at 100–130 points. Further to the north they decrease to 60–80 points.

Except the listed inflows, in physiographic situation of subgeosystems the rivers like Shar, Shagan, Ashisy, Kyzylsy falling into the Ertis plays major role. Some of them have the outlined above flood-plain terraces, but the drain in them is changeable (Shagan, Ashisy, and etc.).

Rivers due to their mode refer to the Altai type. Nourishment of the rivers is mixed due to melting of seasonal snow and summer rains, apart from the Buktyrma river having glacial nourishment. On the rivers Kurshym, Buktyrma timber-rafting is carried out. All rivers (except for the Ertis) have hydro carbonate composition of waters in the period of flood and chloride structure during the low-flow period. In low-flow period there is an increase in mineralization by 2–5 times. The current freezing is developed in the Katun range, in the sources of the rivers Bereli and Sarymsakty.

Average annual layer of drain fluctuates from 1000 to 1500 mm (in a zone of drain formation concerning macrogeosystems) and decreases to 2–5 mm in a transit zone.

Average long-term consumption of water makes 895 m$^3$ per hour in the reservoir area of 179 thousand km$^2$. Average annual water supply of the Ertis macrogeosystem, formed within the Republic of Kazakhstan, makes 200,000 km$^3$ on 1 km$^2$ in a zone of drain formation.

Flooding type is spring and summer. The beginning of flooding is from the 10th of April till the 31st of March in a zone of drain formation and on the 5–10th of April in a transit zone. The ending of flooding is on 31st of July 31 and 15th of May respectively.

The main waterway of Kalgaty-Takyr and Shorga-Kostin subgeosystems is the Kara Ertis river, which has a well-developed valley. At a confluence with lake Zhaysan it forms the boggy delta. Lake Zhaysan occupies the ancient Ertis valley. Lake waters are fresh and flowing. After creation of the Buktyrminsky hydroelectric power station and reservoir, the waters sub time on the top of relief was extended on the Ertis valley to Zhaysan, and level of the lake has increased to a mark of 388 m, as a result the low coast and the delta of Kara Ertis have partially been flooded. The river Kaldzhir, Kurshym, Kendyrlik, and etc. flow down from slopes of nearby mountains. Many of them dry up in the low-water period.

The Ertis-Zhaysansky subgeosystem is formed by large lake—Zhaysan, being young geological formation. Lake Markakol is located at the height of 1449.3 m
above the sea level. Markakol-Karakabin subgeosystems function in the conditions of strongly dissected relief. The slopes of the middle mountains, turned towards the water lake area are occupied with mountain-tundra, mountain-forest and mountain-meadow-steppe natural complexes. The geosystems function in the conditions of increased moistening. The geosystems, created by 27 small rivers (Topolevka, Karabulak, Matabai, and etc.), have steady character. Ultrafresh, subacidic water of lakeside territories forms geosystems of calcic group. The Markakol national nature park is organized in 1976 for protection of biota (Bayandinova 2003c–e).

Geosystems at the height of 1760 m above the sea level are created by lakeside geosystems of Lake Rakhman, surrounded with massif forests from larch, cedar and fir-tree. The lake is flowing and has depth of 30 m. Average annual fluctuation of water level makes 1.5 m.

The lowest rank geosystems are formed in a zone of drain formation in the conditions of mountain-tundra, mountain-meadow, mountain-forest, mountain-steppe high-rise belts. Woods from the Siberian fir and larch are characteristic for the northern massif of macrogeosystem.

The geosystems connected with drain transit zone, develop in the conditions of steppe zones. Geosystems of flat plains, with numerous suffusion and relic thermokarst kettle and drain hollows dominate, that causes weak fitness and complex combination of bogging and salinization processes. Instability of moistening, its intra annual fluctuations lead to alternate strengthening of one or other processes.

Not salted soils prevail in the Ertis-Buktyrminsky subgeosystem. The saline soils can be found on the coasts of salty lakes, and the meadow types are in valleys of some rivers. General direction of geochemical drain in this subgeosystem from the south to north, and the number of salted soils in this direction gradually decreases. Such situation is explained by the change of moistening coefficient, first of all due to the reduction of evaporability. This phenomenon is called inversion of salt belts. The main type of soils salinization is sulfate-sodium. The tendency of the salted soils increase in the area doesn’t pass a toxic threshold.

The big contrast, connected with diversity of habitat communities is characteristic for biological circulation and production processes in biota of the Ertis macrogeosystem. According to long-term stationary researches in the Barabinsk forest-steppe, stocks of live meadow steppe phytomass on ordinary black earth (tops and the top slopes of manes) make 16.4 c/ha (including 2.2 c/ha an elevated part), annual efficiency—19.0 c/ha (including 4.0 c/ha of elevated weight). The maximum efficiency is noted for inundated reed grass swamps (63.7 c/ha), minimum for sea blite thickets on meadow saline soils (3.1 c/ha). Birch splitting on manes product 9 c/ha (7 c/ha of elevated parts) of phytoweight, and in the inter low ridge reduction—13.8 c/ha.

Stocks of cindery elements and nitrogen in live and dead organic mass of Ertis macrogeosystem make 570 kg/ha in meadow and saline communities, 1600 kg/ha in meadow steppes, 9200 kg/ha—in reed grass swamps. In underground bodies about 80% of mineral elements are concentrated. In order to create a year production in the meadow steppe 1013 kg/ha of cindery elements are consumed (Ca, Na, K, Si), 175 kg/ha of nitrogen, in a birch splitting of inter low ridge
decrease are much less (in the sum to 454 kg/ha). High intensity of metabolism is characteristic for the meadow steppe, and the biological circulation is almost closed.

Soil cover in hollows and lowlands is variegated. Leached blackearth prevail in the north of the Ertis macrogeosystem on watersheds under mellow meadows, semi-terrestrial meadow and black earth soils are widespread in the south under meadow steppes. Various halophytic options of meadow steppes are widespread along river courses, on terraces above flood plain. Gray forest solodic soil is developed under birch splitting on manes, and on the kettle is malt. Terraces above flood plain of all subgeosystems are presented by low alluvial clay and loamy plains, and also ancient lake and alluvial with drain hollows. Halophytic options of steppes—fescue-feather grass with halophytic forbs and fescue-goldilocks on sodic soil are widespread in low terraces, hollows, lake kettles of the Markakol-Karakabinsky subgeosystem and the Ertis-Zhaysan intrageosystems. Low alluvial and Aeolian sandy plains along sandy terraces above flood-plain and ancient deltas are characteristic for Bugaz-Tebestinsky subgeosystem, and it is frequent with dune-hilly and hilly-grown in beds sands, semi-fixed groups from sandy feather grass, sheep fescue, and fatuoid and psammophytic forbs on undeveloped dark-chestnut and chestnut soils.

The Ertis-Shulbinsky, Ertis-Buktyrminsky, Ertis-Zhaysansky intrageosystems cover geosystems, which are related to the valley Kara Ertis, lake Zhaysan and the Buktyrminsky reservoir. They have typically Central Asian semidesertic lines. The territories with the lowest marks are presented by the steeply-sloping plain with tasbiyurgun-wormwood vegetation on brown soils. The valley-growing geosystems of Kara Ertis: Kalgaty-Takyr, Shagan-Ob-Zharmin, Shorga-Kostin, Bugaz-Tebestin, Zhuzagash have salino-wormwood vegetable communities, and lakeside winnow anew sandy massifs are Erkek-takyr. The high terraces of Kalgaty-Takyr subgeosystem are occupied with wormwood forbs associations created on light-chestnut soils. Above, according to high-rise belts of Shorga-Kostin subgeosystem change the shape from mountain-tundra, mountain-meadow to mountain-forest and mountain-steppe.

Natural complexes of Ertis-Zhaysan intrageosystem markedly differ from each other with modern physiographic processes that are caused by various conditions of all geographical drain formation, the cornerstone of which is superficial and underground drain.

Factors of techno genesis in different degree changed the natural capacity of region and its ecological situation. Subgeosystems of the Bukhtyrma, Kurshym, Kalgaty-Takyr develop under the influence of toxic substances, which are products of the disintegration emissions from the enterprises of nonferrous metallurgy. The water and land resources, the air basin of city agglomerations of Ust-Kamenogorsk, Zyryanovsk, Ridder, Serebryansk are polluted by salts of zinc, lead, mercury, beryllium. Especially, high pollution by lead (3.3 maximum allowable concentrations) should be noted.

The huge scales of industrial and agricultural production of the Ertis macrogeosystem strengthen a negative ecological situation. Heterogeneity of modern technical equipment in the conditions of market economy, widely extended...
injurious, irrational use of natural resources led to manifestation of adverse natural and anthropogeneous processes on big areas. All this has brought to phenomena, which is named as “ecological crisis” in scientific literature. The problem of geosystems protection against negative processes of technogenesis became one of the major practical and natural—scientific tasks in the Republic of Kazakhstan. However, at the same time there is a certain contradiction between the public nature of conservation and private activity of many enterprises of nonferrous metallurgy that brings certain difficulties in the solution of environmental problems of the region. In 1993 the Ministry of environmental protection gave the East Kazakhstan region the status of a zone of ecological catastrophe. However, at the same time there is a certain contradiction between the public character of conservation and private activity of many nonferrous metallurgy enterprises that brings certain difficulties in the solution of region’s environmental problems. The East Kazakhstan region was given the status of an ecological catastrophe zone in 1993 by the Ministry of environmental protection.

According to the Federal State Statistics Service, only in 1996 year 375 cases of toxic substance emissions in the rivers Tikhaya, Krasnoyarka, Beksu, Ulbu, Glubochanka were recorded. And the threshold limit values in some cases almost hundred times were higher than normal. Only to the river Beksu 160 emergency emissions have been recorded. To the river Glubochanka, the zinc emissions exceeding maximum allowable concentration by 240 times are recorded (Bayandinova 2003b–e).

The Actually-Ertis subgeosystem occupies the territories related to a drain of the river Ertis at the exit from the mountainous territory. Absolute marks of the valley don’t exceed 200 m. Natural complexes of Shar and Shagan subgeosystems are created on the left bank, and has general inclination on the northeast to the river Ertis, also breaks a low ledge. The relief is presented by the flat plain with small ridges and ravines. Some inflows fall into the Ertis, but many of them come to an end in drainless small lakes. Small lakes (Shureksor, and etc.) are located as two parallel chains along the modern course of the Ertis and represent a bottom of ancient valley. The relief of geosystems of the Ertis left bank is poorly dissected, and neogene alluvial deposits are blocked by loess blanket at the power of 10–20 m everywhere. On sublime sites the power of loess makes 40 m. The powerful cover of the loess provides good aeration and drainage, in this connection soils are united and almost completely opened here. Some lake hollows are cut in 70–80 m (lake Kyzylkan, and etc.).

Geosystems of the right bank are formed in the conditions of overlapping relief. Height of ledges reaches 12-15 m. Natural complexes of Balapan-Ertis subgeosystem are created in the conditions of rolling and flat alluvial plains of the fourth terrace concerning dry lake hollows and hills. Modern small lakes with mineralized water (Small and Big Yamyshevsky, Tobolzhansky, Karasuysky, Prigonnoye, and etc.). Geosystems of Shar and Shagan subgeosystems, are created on the most ancient plain with strongly dissected relief and occupied with dune massifs. On the Ertis’s right bank neogene deposits are blocked by ancient the sandy alluvial of this river, having power on average of 5–10 m therefore soils here easily flutter. To the east, they have heavier mechanical structure.
Geosystems related to the first, often saline, and second terrace of the Ertis towering on 4–6 and 15–17 m over the river, are created on both of its coast in the form of strips with a maximum width up to 25 km. Geosystems of the third terrace stretch at the height of 28–32 m over the river, and are widespread basically on the left bank and reach the Kazakh hillocky area. They are mainly composed by pebble-gravel material, gradually changing into sandy to the North.

Geosystems functioning of the lowest order is due to the following features: saline and meadow-chestnut soils with complex fescue-feather grass steppe and halophytic meadows are developed on a left bank in hollows; light loamy, sandy loam dark-chestnut soils with fescue-feather grass and tyrsovy-feather grass vegetation on loams with psammophytic forbs in easy soils are developed on flat plains. Geosystems function in the conditions of kettle-flat moderate and dry steppe.

Geosystems of the Ertis valley in the central parts function in the conditions of typical chestnut soils and are created on the left bank on the second and third terrace, composed by low-power sand-pebble river deposits with fescue-tyrsovy steppes and wormwood-fescue communities on sodic soils. Halophytic meadows are developed in low lands. Pine banded forest with pea tree grow on ancient hollows of drain and sandy deltas of the dried inflows.

Geosystem terraces of right banks are put by sands, and degree of their winnow anew depends on age of terraces. The southwest suburb of Kulunda steppe is complicated by strips of the well remained Ertis crease, hollows of salty lakes up to 60 m in depth, and massifs of dunes and loessial ridges (Balapang, and etc.). Vegetable communities are presented by sand-feather grass steppes with spirea thickets. Pineries with light forests grow on the southern sandy massifs (North Srostensky, Sosnovsky, Chaldaysky pine forests, and etc.). Natural complexes functioning of the Actually-Ertis’s subgeosystem part happens in the conditions of the dry steppe. Geosystems are used as high-yielding water meadows. After the construction of the Ust-Kamenogorsk, Buktyrminsky dams and hydroelectric power station, flooding of flood plain is stopped, and it lost the biological value.

Besides the erosive processes, accelerating negative consequences of technogenesis, negative influence of nonferrous and ferrous metallurgy branches and in general the mining industry on hydro chemical mode of geosystems, on all natural capacity of the region should be noted.

In the seventies, scientists of Academy of Sciences of the Republic of Kazakhstan developed series of actions aimed at improving the Ertis river basin for agricultural use. Intensive deflation on all depth of humic horizon, an exposure of strong carbonate breeds has caused increase in inarable land for agriculture. Now land grounds are often used as pasturable and haying grounds. The meadow areas have decreased after the construction of Buktyrminsky hydroelectric power station. Acres were reduced from 78 to 17%, however pasturable and haying grounds have increased from 20 to 72%. Again created anthropogenous modifications of pasture and haymaking landscapes, and also agro landscapes now experience intensive technogenic pollution. In recent years, natural capacity of the Ertis river basin geosystems has sharply decreased in connection with the influence of the enterprise’s harmful toxic emissions concerning mining, color, chemical industry and
power. Industry objects have changed the natural environment of geosystems functioning, and it negatively influences its physical and geochemical compound. In general, all these processes have changed the general course of mass and energy exchange. Besides, the influence of techno genesis negative processes is aggravated by jubate-hollow character of relief, halophytic biota, and also activization of air streams pollution from industrial complexes. Except efficiency decrease in connection with pollution, these soils easily give into deflation, as they are presented by ancient easy sandy alluvials. Geosystems of the Ertis river left bank have good conditions for a drainage, however influence of the basic northwest and western transfer is smoothed by high coefficients of pollution.

Annually, more than 250 million m$^3$ of sewage is dumped into the Ertis river. Pollution of these waters on the weighed toxic substances exceeds by 3, 6 times of maximum allowable concentration. Dumpings from city treatment facilities of Ust-Kamenogorsk, Semey are the main sources of the Ertis river pollution (Bayandinova 2003a).

The population density of the Ertis macrogeosystem is high. The population density along the river valley and in the industrial centers of East Kazakhstan is especially high. In these regard, significant areas of intended for building, industrial modifications of landscapes and agro landscapes are developed. For the functioning of such geosystems more than 3 billion m$^3$ of water is got from an underground and superficial drain, and more than a half of it is dumped into the Ertis river, making negative impacts on ionic structure of drain and saturating it with toxic ingredients. Besides, the sources of natural waters pollution are the atmospheric precipitation, bearing a large amount of polluting ingredients of industrial origin which are washed away from air. At running off on slopes atmospheric and thawed snow are in addition washed away from the surface of soil pollutant. In city conditions water flows bear a large amount of oil products, acids, and highly toxic elements. The city sewage contains various products of disintegration of radioactive thermoelectric origin, caused by the influence of the Semipalatinsk nuclear test sites (Cherednichenko 2002; Garmashova and Cherednichenko 2002).

In order to restore natural potential, there is a need to rezone areas, occupied with dry-land agriculture on irrigated ones, because the grain farm is unprofitable here and demands not only huge financial expenses, but also the solution of manpower problems caused by the population migration. Problem solution of water resources use has to be solved towards maximum reduction of dumping polluted river waters, ground water conservation in rolling interfluvial territories, purifications of industrial waters, introductions of water supply turnover in industrial centers.

Four subgeosystems are included in the Ertis-Shchulbinsky intrageosystem (Shulbinsky, Ubinsky, Ulbinsky, Kyzylsu-Tantisky). Each of these subgeosystems has united factors of technogenic pollution and identical conditions of environmental risk. It is connected with the influence of atmospheric emissions, waste and industrial drains. Nevertheless physiographic conditions, which gain local lines, cause various degrees of negative ecological situations: these issues in more detail will be considered in the following subsection.
2.2 Analysis of Major Factors in Formation and Migration of Technogenic Polluted Geosystems in East Kazakhstan

2.2.1 Principles in Studying and Mapping of Technogenic Geosystems

The qualitative structure of natural migration flow changes as a result of economic activity (because of technogenic substances (TG) inclusion and energy while forming technogenic geosystems).

In the scientific literature much attention is paid to the questions of lands’ damage in connection with the production and processing of minerals in the zones of nonferrous metallurgy impact, and also chemicals, introduced to the elements environment. The share of the research, covering at the same time all natural components as the soil, plants, water, and air is very small. Complex predictive landscape and geochemical researches were conducted under the leadership of M.A. Glazova, who analysed the influence of industrial centers with various types of technogenic impacts on geosystems in geochemical relation. But such works are not sufficient, and they, as a rule, cover small territories that limit possibilities of geographical interpolation of the obtained data (Panin 2000; Glazovskaya 1962, 1967, 1976, 1992; Geohimiya tyazhelyih metallov v prirodnyih i tehnogennyih landshaftah 1983; Glazovskaya and Kasimov 1987).

Insufficiency of methodical and methodological armament of landscape and geochemical researches, at complexity and diversity of problem, forces to draw a close attention, first of all to the principles and technique of these researches. Methods, which give satisfactory results on traditional landscape and geochemical researches aren’t enough for the analysis of territories, undergoing technogenic factors influence. It is concerned with the system of field and analytical methods as well (Dyakonov 1985, 1988).

Studying landscape and geochemical features of environment is impossible without the simultaneous solution of two interconnected question groups: a) the main types identification of local responses concerning natural systems on technogenic influences, i.e. analysis of structural and geochemical reorganization of initial landscape and geochemical systems; b) distinguishing geosystems with the united type of responses to certain technogenic influences, i.e. division into districts of territories according to groups and classes of technobiogeom (Glazovskaya 1988; Kosimov 1980; Aslanikashvili and Saushkin (1975); Perelman 1966, 1968). In other words, it is necessary to combine landscape forwarding works, detailed researches and the wide geographical and landscape and geochemical analysis of the environment with the generalization of available field materials.

Basic continuity of small-scale and large-scale landscape and geochemical researches defines the main methodical scheme of researches—the principle of consecutive landscape and geochemical analysis (Nikolaev 1978, 1989).
Without getting into the classification analysis of technogenic transformed landscapes, proposed by different authors, we will mark that in most of them technogenic factors are accepted as a leading change of the environment, and they can be quite reasonably compared with the intensity of geological influences.

Actually, structure and qualities of technogenic transformed territories is a result of hyper gene processing concerning initial substance reserves, and those which come to them at migration. Active withdrawal of substance big mass or essential increase in substance or energy receipts in natural systems is followed by changes of geochemical qualities of the last, and intensity of such transformation depends on that as how many arrives or withdrawn from natural circulations. Therefore, at researches of geochemical features, technogenic factors have to be considered along with natural ones. Thereby, geochemical activity of the prevailing technogenic influence types of natural system responses also have to be investigated.

In the case of mining production and the related mining and processing industry the following have to be studied: (a) extraction from a subsoil minerals, their transportation and the primary TG dispersion of substances of various degree of geochemical activity and toxicity, caused by it; (b) processing, i.e. enrichment of ores and receiving concentrates, storing of waste and secondary technogenic dispersion of substances.

Geosystems in mining areas also change in connection with the intake of flothoreagents, power production waste in natural circulations.

In addition, there take place mechanical violations of the initial geosystem because of the withdrawal or damages of soil, ground or organic masses. Mechanical influences cause changes in the mode of migratory processes that also leads to geochemical environment reorganization, but in another direction and intensity.

Therefore, while choosing reference objects, first of all, it is necessary to consider the geochemical activity of the operating TG loadings, the degree of concentration or substance dispersion in the course of economic activity, and also their natural prevalence.

Taking into account these factors, the influence of TG in connection with the intake or withdrawal of elements with high (Si, C, S, Fe, etc.) or low (Pb, Zn, Sn, etc.) and very low (Hg, Au, U, As, Cd, etc.) natural percentage abundance has to be isolated. The concentrated impact on natural processes of elements connection with low and very low percentage abundance is mainly technogenic, since in the natural state they are characterized by very high extent of dispersion (Dergunov et al. 1988).

Geochemical active substances possess, as a rule, high biological activity. With the intake in quantities above critical level (miscellaneous for different environment) there appear tangible deviations in biological systems from the norm. Among geochemical active elements and connections, especially with low and very low natural percentage abundance, there are a lot of highly toxic ones. It is natural that geochemical stability—adaptation or reorganization of natural systems geochemical structure or their components to the different TG groups of influences isn’t identical. It is necessary to differentiate not less than two cases:
1. technogenic influences are toxic for the environment, they cause its degradation, breakdown or radical reorganization, up to destruction of natural geosystems or their separate components;

2. technogenic influences are nontoxic for the environment. Such impact can even be favourable (intake of minerals, insufficient for specific landscape and geochemical conditions, lime application or plastering of soils, introduction of organic fertilizers, etc.). However, technogenic influences, though being nontoxic can be unfavourable for the normal functioning of natural systems.

In mining areas, because of the distinctions in the TG influences’ dynamics, two types of the environment transformation are combined and alternate spatially.

1. At continuously operating or periodically renewable TG loadings in the areas of mining functioning and the mining processing enterprises, central heating and power plant, hydraulic engineering constructions, and etc. degrade and collapse initial natural communications, and the system of geosystems transformation zone is formed, which is characteristic for each TG loading type.

2. After working off the field stocks and termination of mining operations, the broken natural systems or their separate components are gradually restored, however such restoration is not always possible without the application of remediation actions. Peculiar zones of restoration with geochemical qualities are formed, significantly different from the initials. But along with the restoration of soil and geochemical interfaces in such areas there is also a further degradation of some territory sites under the influence of residual technogenic factors—breeds dump of different degree on toxicity, shoddy hydraulic engineering constructions, and etc. In other words, in these conditions, a restoration of broken natural connections and further deep processing of initial natural systems under the influence of earlier technogenesis products concurrently occurs.

Therefore, two main types of natural system responses—degradation or restoration cause the need for the analysis concerning the development of two directions: different stages and forms of degradation, also the stages and forms of violation restorations of natural systems or their components (Table 2.1).

The increase of TG impacts intensity on natural systems without emergence of essential consequence is possible only to a certain limit. There is a critical area—a

<table>
<thead>
<tr>
<th>Name of taxon units</th>
<th>Basic principles of identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Belonging to certain zone signs</td>
</tr>
<tr>
<td>Subtype</td>
<td>Biological circulation feature of substances</td>
</tr>
<tr>
<td>Class</td>
<td>Features of an air gain and carrying out of pollutants, geochemical specialization of emissions and waste</td>
</tr>
<tr>
<td>Sort</td>
<td>Features of water migration</td>
</tr>
<tr>
<td>Habit</td>
<td>Geochemical feature of soils and maternal breeds</td>
</tr>
</tbody>
</table>
point of toxicity through which transition leads to the destruction and full reorganization of initial landscape and geochemical systems, and can have catastrophic consequences. In different geographical conditions (even in case of TG influences uniformity) they are reached at different intensity of the operating factors.

During the source removal, influence of TG substance streams or energy per unit area of initial landscape and geochemical systems, as a rule, decreases and, therefore, the metamorphism of natural geochemical processes is weakened, changing the structure of zones influence.

The regularities of combination concerning TG zone influences among themselves, their connections with TG components and initial geosystems are individual for each region and have a certain spatial gradient of changes, so it should be the subject of the study.

Estimates of the geosystems condition, under the influence of technogenesis factors require the development of their ecological-geographical classification. Such classification should be basic in an assessment of condition of natural and anthropogenous environment components and form a basis for acceptance of spatially differentiated nature protection actions.

It is rather obvious, that there are several approaches to the classification creation of the changed technogene geosystems, the main of which are: (1) the geointegrated approach, based on allocation in subgeosystem of spatial complete systems, as results of natural and technogenic factors interaction of landscape shaping, degree of natural processes fracturing; (2) geostructural approach based on the natural and technogenic components combination; (3) ecological or nuclear approach (in A. Yu. Reteyum’s point of view), representing in fact zoning of anthropogenous impact in the system types as “technogenic source is the environment”.

Since the basic ecological-geographical systematization of technogenic geosystems has not been developed yet, it is expedient to consider the geochemical principles of such systematization, to a certain extent uniting the approaches discussed above and considering environmental pollution as one of the most important sites of technogenic influence. Geochemical approach for technogenic geosystems of higher level is based on the accounting of technogenic loading intensity and natural (natural and technogenic) geochemical situation.

It is expedient for the systematization of technogenic geosystems to fulfill two principal requirements: it should have the close basement with the classification suggested by authors (Kasimov and Perelman 1993) and the existing natural classifications by A.G. Isachenko and V.A. Nikolaev, used further. Especially it is necessary to emphasize the need for the general systematization of the natural and technogenic landscapes, created in a river basin or inflow (subgeosystem) in the conditions of strong technogenic transformation. Systematization of the technogenically changed soils also should be based on the initial principles.

Actually, such approach at the different levels of classification demands the use of various bases and criteria of taxons’ differentiation. Therefore, as the bases, anthropogenous (social and production) factors of technogenesis are used on the top of the taxon classification levels of technogenic geosystems, and on the lower there taken natural-conditioned ones (Table 2.1).
The main geochemical feature of industrial, transport and other technogenic influence factors is the formation of technogenic anomalies in various components of the geosystems tied to superficial drain. Contrast and spatial position of anomalies depends on a combination of technogenesis zone’s functional structure, the defining nature and level of technogenic influence on environment, and the geosystem-geochemical conditions differentiating this influence. Therefore, geochemical classification of city geosystems should be based on two interconnected factors—technogenic and natural ones.

The leading value is given to the technogenic migration, in many respects determined by the attachment to this or that functional zone, in accordance with feature of which the orders of landscapes are distinguished. Many quantitative parameters of technogenic pollution, and also the transformation and degradation nature of biological circulation are connected with them. Five main types of geosystems are distinguished: (1) park and recreational; (2) agrotechnogenic; (3) intended for building; (4) intended for building and transport; (5) industrial, for which the coefficient of pollutants intake contrast from the atmosphere in comparison with a background, fluctuates from less than 10 in a park and recreational zone, up to more than 30 in an industrial one (Kasimov 1990). These are respectively geosystems of weak, moderate, strong and almost full degradation of biological circulation; however, quantitative criteria for evaluation of degradation are poorly developed.

Within orders, due to water transfer features—carrying out pollutant and geochemical specialization of waste emissions and drains, several groups of technogenic geosystems have been distinguished. The first three orders represent landscapes mainly of pollutants gain (emission). In their limits geochemical differentiation of geosystems in many respects is defined by local migration of pollutant.

Usually smaller athmotechnogenic strain is experienced by park and recreational geosystems. The role of biogenous migration is still big. Considering influence on population health, especially it is necessary to allocate the geosystems, used for execution of agricultural production (gardens, kitchen gardens), which are under double press of pollutants—athmotechnogenic and agogene (fertilizers, toxic chemicals).

The other types of technogenic geosystems (Table 2.2) are sources of technogenic emission and the place of partial pollutant accumulation. The type of industrial geosystems depending on production type, the extracted raw materials, a power source and the nature of waste is divided into the geosystems of the certain specialization plants and mines, power plants, tailings dams, dumps, disposal sites (Alekseenko 1990).

For the subtypes division of technogenic geosystems as an integrated criterion serve the levels of separate components pollution and the degree of their danger to live organisms within types.

Water migration of chemical elements for technogenic geosystems is considered at the level of sorts, divided due to the combination of oxidation-reduction, alkaline-acid conditions and types of geochemical barriers in soils profile and
At the same time, the assessment of transformation of geochemical conditions concerning migration and its forecast under the technogenesis influence has particular importance, that can be considered at the appropriate taxon level (subclass) and reflected in fixing of this or that tendency of geochemical conditions change. It is expedient to consider also oxidation-reduction conditions of ground waters.

In geosystems of technogenesis kernels, the intensive atmospheric intake of substance levels influences a relief on pollutant redistribution. Therefore ideas of autonomy and subordination of technogenic geosystems demand essential modification in comparison with natural analogs. Substantially, the postulate on the negligible size of substance supply from the atmosphere to eluvial landscapes loses meaning, which, obviously, can be used only for background conditions.

### Table 2.2: Types of technogenic geosystems (Kasimov and Perelman 1993)

<table>
<thead>
<tr>
<th>Levels and danger of pollution*</th>
<th>Types of geosystems</th>
<th>Recreational</th>
<th>Agrotechno-genic</th>
<th>Urban</th>
<th>Transport</th>
<th>Industrial and mining</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Low</strong> ($Z_c &lt; 16$; $P &gt; 200$)</td>
<td>Inundated woods, forest plantings by average pollution</td>
<td>Low pollution (arable land)</td>
<td>Low pollution (small population areas)</td>
<td>Roads of regional value</td>
<td>Small open pits</td>
<td></td>
</tr>
<tr>
<td><strong>Average, moderately dangerous</strong> ($Z_c$: soils—16–22, snow—64–128; $P = 250–450$)</td>
<td>Recreational with average pollution</td>
<td>Agrotechno-genic with average pollution (gardens)</td>
<td>Average level of pollution (working settlements)</td>
<td>Average level of pollution</td>
<td>Moderate and dangerous level of pollution</td>
<td></td>
</tr>
<tr>
<td><strong>High, dangerous</strong> ($Z_c$: soils—32–128, snow—128–256; $P = 450–800$)</td>
<td>Green space of suburbs</td>
<td>–</td>
<td>Dangerous level of pollution (the small cities)</td>
<td>High level of pollution</td>
<td>Dangerous level of pollution (mine, tailings dam)</td>
<td></td>
</tr>
<tr>
<td><strong>Very high, extremely dangerous</strong> ($Z_c$: soils &gt; 128, snow &gt; 256; $P &gt; 800$)</td>
<td>–</td>
<td>–</td>
<td>Very high level of pollution (the large cities)</td>
<td>Roads in the cities</td>
<td>Very high level of pollution (the territory of factories and plants)</td>
<td></td>
</tr>
</tbody>
</table>

*Z_c—total indicator of pollution, conventional units (anomaly coefficients sum of separate elements); $P$—size of dust loading, kg/km² per day; for convenience, the corresponding communities aren’t specified in empty cages.

(Methodical recommendations about geochemical assessment of environmental pollution sources 1982; References Methodical recommendations about assessment of the chemical elements pollution in city territories 1982) between the interfaced geosystems with preserving the traditional names in landscape geochemistry.

At the same time, the assessment of transformation of geochemical conditions concerning migration and its forecast under the technogenesis influence has particular importance, that can be considered at the appropriate taxon level (subclass) and reflected in fixing of this or that tendency of geochemical conditions change. It is expedient to consider also oxidation-reduction conditions of ground waters.

In geosystems of technogenesis kernels, the intensive atmospheric intake of substance levels influences a relief on pollutant redistribution. Therefore ideas of autonomy and subordination of technogenic geosystems demand essential modification in comparison with natural analogs. Substantially, the postulate on the negligible size of substance supply from the atmosphere to eluvial landscapes loses meaning, which, obviously, can be used only for background conditions.
Technogenesis factors influence not only water, but also air migration of pollutant, and the accounting provision of their relatively main sources of pollution and the prevailing athmotechnogenic streams are required, along with traditional allocation of mobilization zones, transit and substance accumulation (eluvial, transeluvial, eluvial-accumulative, super aquatic elementary landscapes). As a rule, athmotechnogenic anomalies are connected with windwardly slopes or water separate surfaces, and leeward slopes are less polluted.

On these basis, sorts of technogenic geosystems are allocated (windwardly transeluvial, leeward transeluvial, and etc.). It should be noted, that it isn’t clear yet, how better to consider a ratio of natural and technogenic factors in classification. In this systematization, the influence of technogenic factors was considered at higher taxon level (class).

There is an important meaning in implementation of such geosystems into natural (water-erosive) or natural-technogenic (to basins concentration of storm drain) and cascade systems of certain order, and also the openness or isolation of these systems defining features of migration and accumulation concerning technogenesis products.

Many features of water migration, and also pollution levels are closely connected with particle size distribution of soil and ground. So, initial contents of chemical elements and sorption capacity of sands is much less, than at loams, moreover sands are better washed out by an atmospheric precipitation, and etc. The particle size features of soil and ground are considered in technogenic geosystems types division. At the same time, it is important to distinguish natural soil and ground from technogenic soils, deposits and the asphalted surfaces.

The signs and parameters, serving as the separation cornerstone of taxon levels, in case of the appropriate computer processing represent, in fact, the database, necessary for the creation of the ecological-geographical information system concerning the technogenically transformed territories (Geograficheskoe prognozirovanie priroohrannyyih problem 1988; Svirezhov 1982; Vladimirov et al. 1986; Volkova and Davydov 1987; Kalygin 2000; Shukputov 2001).

Thus, even in case of quite simple structure of production, the character and the dynamic of TG impacts on the environment are ambiguous, but they can be grouped and ranged on possible response of landscape and geochemical systems or their separate components to them. The signs and parameters, being the separation cornerstone of taxonomical levels, in case of the appropriate computer processing represent, in fact, the database necessary for creation of ecological-geographical information system.

2.2.2 Geochemical Analysis of Technogenic Impact and Factors of Technogenesis

Technogenic pollution began far back in the past. In heritage from the first Altai getters of bronze era, there were career dredging, dumps of overburden breeds, sub-standard ores and factory slags which, being exposed to oxidation processes,
continue to pollute the environment. In a “pure” look, ancient technogenic anomalies of bronze era and later are fixed only in those places, where production and ores processing had been thrown in due time and later wasn’t renewed. In other fields, which have been involved anew in development during the late period (Zavodskoe, Zmeinogorsky, Zyranyovskoe, Orlovskoe, Nikolaevskoe, Riddersky, and etc.), traces of former production have been shaded by more powerful, large-scale developments and have practically not remained. The negative impact of ancient and old enterprises on the environment, their specific weight is rather small.

The main enterprises of mining and metallurgical complex are located in a zone of the most dense river network. Owing to the technical need, the largest enterprises of power system are located here. Such arrangement means, that all pollutants with gaseous, liquid and solid waste from the industrial enterprises inevitably get to river network and soil, causing ecological damage, both to biosensors, and area population.

In regards to the degree of negative impact on the environment, operating enterprises can be arranged in such sequence: (1) metallurgical production; (2) mining and processing factories; (3) pits of open works; (4) underground mines.

Ecological blocks of any industrial city, between which pollutant streams are formed, are conditionally divided into three groups: (a) emission sources, which include industrial city complex, city housing-communal services and transport; (b) transit means, directly accepting emissions, where there is a transportation and partial transformation of pollutants—the city atmosphere, atmospheric losses (rain, snow, dust), temporary and constant waterways, surface water and reservoirs (ponds, lakes, reservoirs), ground waters; pollutants come to these natural systems through the opened and closed collectors by dispersion through the atmosphere or from warehousing of solid waste; (c) depositing environments, in which technogenic substances—ground deposits, soils (especially, sites of geochemical barriers), plants, microorganisms, city constructions, city population are collected and transformed.

By anomaly degree, concerning lithosphere percentage abundance, the first place is taken by emissions of the enterprises (tungsten, antimony, lead, cadmium, nickel are especially strongly concentrated in the dust), then a little less or comparable to them is loading from waste, drains take the third place in anomaly row. However, due to an absolute lot of delivery to the environment, solid waste advances in emissions. The large number and unevenness of technogenic sources placement in combination with an environment, create a difficult picture of geochemical fields and abnormal zones in the territory of the industrial cities. Identification of technogenic sources in the large city is more complex challenge, in comparison with the separate highly specialized enterprises in small cities and settlements. Therefore, the inventory of technogenic sources is one of the major tasks and priorities in the ecological-geochemical estimation of the cities’ condition (Bykov 1988; Tehnogennyie potoki veschestva v landshaftah i sostoyanie ekosistem 1981; Dreyer 1997; Mickiewicz and Sushik 1981).

The major factors, influencing the quality of atmospheric air in large industrial centers of the East Kazakhstan Region (EKR) are emissions of enterprises, and the
growing number of pollution from the stationary and mobile sources. The pollutants (P) make negative impact on the environment, at the same time, catching and neutralization of emissions at the level of 90% for the stationary sources have been reached now.

The main part of emissions from the stationary sources fall on the regional center (to 45%), the automobile transport is also observed as there is a significant increase in quantity of mobile sources. The situation is aggravated by the features of atmosphere circulation over Ust-Kamenogorsk, since here for a year they have on average > 100 days with adverse meteoconditions (AMC) during the summer-autumn period, when the calm type of weather prevails.

The greatest strain from emissions of pollutants on the EKR is experienced by the atmosphere of cities such as Ust-Kamenogorsk, Semey, Zyryanovsk and Ridder (Table 2.3 and Figs. 2.2,2.3,2.4), the data characterizing anthropogenous impacts on atmosphere of the EKR cities and regions are submitted.

Quantity of pollution sources in the atmosphere on the EKR makes 17,189, among them organized ones are 10,011, and equipped with treatment facilities are 1797. The high level of pollution is explained by low air out of atmospheric space. The airborne pollutants collect in a ground layer of atmosphere, and their concentration remains at very high level. Load of highways with city transport, complexity of automobile transport exhausts is one of the main sources of air atmospheric pollution by nitrogen dioxide, carbon oxide, organic substances in

<table>
<thead>
<tr>
<th>Administrative regions</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ust-Kamenogorsk</td>
<td>61.5</td>
<td>55.8</td>
<td>55.7</td>
</tr>
<tr>
<td>Semey</td>
<td>27.6</td>
<td>25.6</td>
<td>22.9</td>
</tr>
<tr>
<td>Ridder</td>
<td>9.6</td>
<td>6.8</td>
<td>9.1</td>
</tr>
<tr>
<td>Kurchatov</td>
<td>1.4</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Abay</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ayagoz</td>
<td>2.6</td>
<td>2.5</td>
<td>3.2</td>
</tr>
<tr>
<td>Beskaragay</td>
<td>0.5</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Borodulikhin</td>
<td>3.3</td>
<td>2.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Glubokov</td>
<td>3.8</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Zharmin</td>
<td>3.8</td>
<td>3.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Zaysan</td>
<td>1.9</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Zyryanov</td>
<td>10.7</td>
<td>11.9</td>
<td>12.7</td>
</tr>
<tr>
<td>Katon-Karagay</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Kokpektyn</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Kurchum</td>
<td>0.8</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Tarbagatay</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
</tr>
<tr>
<td>Ulan</td>
<td>1.8</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Urdzhar</td>
<td>2.6</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>Shemonaikhy</td>
<td>5</td>
<td>2.6</td>
<td>3.5</td>
</tr>
</tbody>
</table>
settlements, and moreover high load of highways even with a good air out, leads to the accumulation of harmful impurity in the air atmosphere.

High level of air pollution in the EKR is caused by the emissions of enterprises of nonferrous metallurgy, power system and automobile transport, and also by the climatic conditions, not favorable for pollutants dispersion. Pollutants composition in emissions on the EKR contains up to 170 names, from them 22% belong to

![Graph](image-url)
2.2 Analysis of Major Factors in Formation and Migration of …

Fig. 2.2 (continued)
class of danger (among them are lead, cadmium, arsenic, fluoric hydrogen, chlorine, beryllium, which gross emission percent is small, but their high toxicity is extremely dangerous to environment). Besides, many of them have the summation effect, strengthening impact on human health in the combined presence of such substances in atmospheric air.

In 2013, the volume of resolved limit on pollutant emissions in atmosphere for enterprises of the 1st category (147 630 tons/year): 33% of pollutant emissions are the metallurgical branch enterprises share; 13%—municipal services; 17%—heat

![Graph showing pollutant emissions in different years and locations](image-url)
2.2 Analysis of Major Factors in Formation and Migration of …

Fig. 2.3 Dynamics of the atmosphere pollution index of the EKR (APS5) for individual cities/Environmental protection and sustainable development of Kazakhstan 2011–2015/Statistical collection/Committee on statistics of the Ministry of national economy of the Republic of Kazakhstan/

Fig. 2.4 Emissions of the widespread substances of the EKR departing from stationary sources in 2015 which are most polluting the atmosphere/Environmental protection and sustainable development of Kazakhstan 2011–2015/Statistical collection/Committee on statistics of the Ministry of national economy of the Republic of Kazakhstan/
power sector; 22%—construction branch; 10%—mining and mountain processing industry; 2%—food industry; 1%—oil and gas sector.

A little smaller, but rather notable damage is caused by the mining and concentrating enterprises. In the recent past, there were not less than 16 operating mines and 9 concentrating factories here. About 13 million tons of ore were annually got and processed, from which over 90% weren’t utilized, stored in storages together with the waste of floatation process, even more aggravating their adverse effect. The huge mass of overburden breeds and sub-standard ores, many times exceeding the produced ore are being localized near the enterprises in form of dumps (Table 2.4).

In the Ertis river basin, a large amount of flue gases is released, when processing mineral raw materials at the metallurgical enterprises. Sulfur dioxide, carbon oxides, nitrogen oxides, chlorine, heavy metals are a part of gases. Especially, a lot of sulfur dioxide is produced, when processing sulphidic raw materials at the non-ferrous metallurgy enterprises. Flue gases, at the same time, have to be processed for receiving sulfuric acid. But in recent years, because of the lack of demand for the sulfuric acid, manufactured in the East Kazakhstan, there arise a problem of sulphurous gases utilization for the metallurgical enterprises.

Metallurgical enterprises are also the main supplier of heavy metals emission. In turns of zinc-lead production, a large number of arsenic combinations released into the atmosphere, which have to be buried, circulate. The enterprises of power system and automobile transport as well as the metallurgical enterprises are found to be the sources of the greenhouse gases and substances, forming acid rains.

Especially a lot of sulfur dioxide is formed at combustion of the Semipalatinsk coal, having the increased content of sulfur, which isn’t utilized at enterprises of power system and is in full released into the atmosphere.

Table 2.4 The characteristic of metallurgical production waste in the Ertis-Shulbinsky intrageosystem/according to EKRTDEP/

<table>
<thead>
<tr>
<th>Subgeosystem</th>
<th>Type of waste</th>
<th>Quantity of dumps</th>
<th>Total amount, one thousand m³</th>
<th>Area of alienation, sq.km</th>
<th>Contents, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cu  Pb  Zn</td>
</tr>
<tr>
<td>Shulbin</td>
<td>Slag disposal area, clinker</td>
<td>1</td>
<td>1500</td>
<td>18</td>
<td>0.45 0.75 0.92</td>
</tr>
<tr>
<td>Uba</td>
<td>Slag disposal area</td>
<td>5</td>
<td>12,340</td>
<td>Data is absent</td>
<td>0.5–2.45 0.35–1.8 1.0–6.0</td>
</tr>
<tr>
<td></td>
<td>Dumps of solid wastes</td>
<td>1</td>
<td>637</td>
<td>Data is absent</td>
<td></td>
</tr>
<tr>
<td>Ulba</td>
<td>Slag collection system</td>
<td>3</td>
<td>923</td>
<td>The same</td>
<td>The same</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
<td>15,400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem of pollutant emissions in the atmosphere isn’t located in the place of their emergence, as the cross-border transfer of atmospheric industrial emissions of high concentration is possible at the distance ranging from 400 to 500 km, where they drop out in the form of acid rains, are besieged on the land surface, get to water, acidify the soil, harm elements of biocenoses.

As for the atmosphere pollution of cities, major striking factors are connected with the enterprise’s activity of metallurgical complex and power system. There are steady excess emissions of sulfur dioxide, nitrogen oxides, phenol, bioxyde format, and lead. Volumes of dust emissions, carbon dioxide, chlorine, arsenic begin to increase. As a result, there is a direct impact on the biosphere in form of emissions of physically and chemically active agents, inert materials, and there come a direct heating of the atmosphere and physical impact in the form of acid rains.

The analysis of emissions placement on given areas shows that they are divided into two groups. The first one includes cities such as Ust-Kamenogorsk, Semey, Ridder, Zyryanovsk, and also the regions of the East Kazakhstan, having the large industrial enterprises, generally mining and metallurgical. Emissions nature for 70% is presented by gaseous and liquid form of pollutants. Main emission of solid pollutants goes from unorganized sources, such as dumps, tailing—and output ponds, raw material warehouses. Main suppliers of pollutants in a gas and liquid form are the metallurgical and power system enterprises.

Other regions of the East Kazakhstan and Kurchatov city make the second group. Emissions nature in the form of the thrown-out substances phase is halved on solid and gaseous the together with the liquid phase. Efficiency of cleaning makes no more than 21%. Main emission suppliers are small boiler rooms without systems of dust and gas catching. The greatest emissions number from automobile transport comprise the share of Ust-Kamenogorsk and Semey (34 and 23.5% respectively).

One of the most effective remedies in dust suppression is gardening. At combustion of one liter of fuel in the automobile engine about 200–400 mg of lead get to air. During the vegetative period one tree can save up such amount of lead, which is contained in 130 L of gasoline. Simple calculation shows that neutralization of harmful operation of one car requires not less than 10 trees. The number of vehicles in Ust-Kamenogorsk annually increases by 5–7 thousand units. For 01.01.2015, the number of vehicles made 105,521 units. Automobile transport becomes the main source of atmospheric air pollution. In the sum of atmospheric air pollution the share of transport emissions makes about 40–60%. The ecological safety center of Ust-Kamenogorsk since 2012 has been exercising visual control of “the smoking transport” with the subsequent data transmission to public authorities for taking administrative measures. The use of low-quality hydrocarbon fuel and vehicles operation for more than 10 years is considered to be one of the main constant pollution reasons.

Measurements of atmospheric air pollution levels in the East Kazakhstan are regularly carried out in Ust-Kamenogorsk, Ridder and Zyryanovsk. Dust, sulfur dioxide, carbon, nitrogen, chlorine, formaldehyde, phenol, arsenic, leads are found. The most toxic of listed ingredients is lead (the 1st class of danger). Dynamics of
average annual impurity of atmospheric air in the listed settlements on the atmosphere pollution index (API) fluctuates from 11 to 24 (Cherednichenko and Nedovesov 1997).

In ecologists opinion, it was unfair, that only for the first half of 2016 according to PLT “Kazgidromet” the number of excesses over 1 MPC on this ingredient has made 74 times. For comparison: for the entire period of 2015 the excess of the weighed substances was observed only 34 times.

In the spatial distribution of aero technogenic streams, the major role is played by geomorphologic factors: polluted air masses are localized either in closed hollows (Zyryanovsk), or move due to the daily inversion lengthways the steep-sided valleys of large water currents (Ertis, Ulba, Bukhtyrma). The water separate ridges framing them are natural barriers, interfering with wider vulgar circulation of aero technogenic loops. The most powerful aerogenic stream functions along the Ertis river valley. In the northwest direction its influence is felt to border with the region Semey, in the southeast—to the Bolshenarymsky village; not less stable aero technogenic and water streams are observed along the Ulby and Bukhtyrma valleys.

The carrying out of dust into the atmosphere from dumps of the Ridder Polymetallic Plant (RPP) fluctuates from 0.5 to 1.5 thousand hectares that averages 100 tons a year. Integrated calculations show that dusting from destruction of all technogenic waste in a year makes 113 thousand tons, and for the entire period of mining production dust demolition only in Ridder district makes 300 tons in a year.

According to “The National center of health and work-related diseases”, which conducted meteorological researches in the urbanized territories in 2015, in Ust-Kamenogorsk the excess of dust in average daily MPC has made 64%, lead, chrome, copper, zinc, cobalt, arsenic being its chemical compositions.

The highest dust loadings are indicated in the zones of the large industrial enterprises of mineral and raw complex. For example, in the Gluboky settlement (Ertis copper smelting plant ECSP) they reach 2560 kg/km² per day, in Ust-Kamenogorsk (Lead-zinc plant LZP) is 2987 kg/km², in Ridder (RPP)—1000 kg/km² per day, and more, that corresponds to extremely dangerous extent of atmosphere pollution (Fig. 2.3).

In areas of mining and processing productions (intended for building zones of Zyryanovsk, the Belousovka settlement, and Verkhneberezeovsky) dust loadings has reached 700 kg/km²/day. Metal loadings (in estimates on Zindicator) in the specified epicenters of pollution make 400–700 excesses over a single background that corresponds to a very strong level of atmosphere pollution. Atmospheric air conditions in the region, especially in settlements—the centers of industrial production, it is necessary to recognize as crisis.

Atmospheric air in the cities is usually polluted by sulfur oxides, nitrogen, and dust, but the increased concentration of pollutants are especially dangerous, being specific to each type of production. The highest levels of pollution are observed in the cities with black, color and petrochemical industry where MPC of harmful substances are already exceeded several times. Among specific pollutant in the cities, prior positions are taken by the polycyclic aromatic hydrocarbons (PAH), formaldehyde and heavy metals. Especially contrasting are technogenic anomalies.
of one PAH—3,4 benzpyrenes, having cancerogenic properties and formed, mainly, when burning the fossil fuel (Fig. 2.5)/according to EKRTDEP/.

In the cities dust content of air is high. So, in background ecosystems the supply of solid substance from the atmosphere makes 10–15 kg/km per day.

In the industrial cities, it increases by 5–10 times and more, that leads to growing up role of the weighed particles as carriers of chemical elements and contrast of the technogenic anomalies, formed in atmospheric drop-outs. At the same time two types of athmotecnogenic loading are distinguished: (1) loss of dust in large amounts with rather low concentration of pollutant and (2) the high loadings formed by loss of smaller amount of dust with the increased chemical element contents.

Because of many pollutants global distribution, especially heavy metals, there are great difficulties when determining a regional background of atmospheric drop-outs. Soils are the main supplier of naturally originated heavy metals in the atmosphere. It is considered that for these metals, and also arsenic and antimony, the anthropogenous contribution to their total amount in atmosphere already makes more than 50%. Therefore, the concept “background” for atmospheric losses is relative. On a regional background of loss in the industrial cities, on average at 3–15 times are enriched with heavy metals. In turn, the territory of Ust-Kamenogorsk is, as a rule, polluted unevenly and on the raised city background stands out clearly that the technogenic anomalies of losses dated for industrial zones, where concentration of zinc, lead, nickel, mercury, chrome and other metals increase usually by 5–6 times.

Intensity of air pollution in the cities depends on the number of physiographic factors and, first of all, on meteorological situation and land relief. Especially strong pollution is characteristic for the industrial cities, located in the mountain hollows (mountain-kettle community) with frequent inversions of temperatures.
The sources of technogenic and anthropogenous impact on the environment of Ertis-Shchulbinsky subgeosystem in Ust-Kamenogorsk are the enterprises of non-ferrous metallurgy, power system, food and processing industry, municipal enterprises, automobile and railway transport.

The most ecologically problem enterprises are: JSC “Kazzinc”, JSC UMP, AES Ust-Kamenogorsk HPP, AES Sogrinsky HPP, Ust-Kamenogorsk TMP.

According to the Statistics department of East Kazakhstan region for 2015 year, 18 592 sources of atmosphere pollution are registered, from them organized ones are 10 306. In the city Ust-Kamenogorsk, 5 899 sources are registered, out of them organized ones makes 3 324. The volume of emissions from stationary sources to the atmosphere in 2011 made 147.2 thousand tons per year. From 2012 to 2015 year decrease is observed: in 2012—140.0 thousand tons, in 2013—124.9 thousand tons, in 2014—129.6 thousand tons, in 2015—127.2 thousand tons (Fig. 2.6)/according to the Ministry of national economy of the Republic of Kazakhstan, Committee on statistics/.

The main sources of pollutants with nitrogen dioxide, sulphurous anhydride, formaldehyde, benzapyrene, phenol, carbon oxide and the weighed substances are the metallurgical and thermal industry enterprises, such as UK MC JSC “Kazzinc”, JSC “AES Ust-Kamenogorsk HPP”, JSC “AES Sogrinsky HPP” JSC “Ust-Kamenogorsk Thermal Networks”.

About 80% of all emissions in the atmosphere in the area are the share of the cities Ust-Kamenogorsk, Semey, Zyryanovsk, and Ridder. Dynamics of atmosphere pollution index (APS₅) around the city Ust-Kamenogorsk from 2011 to 2014 is the following (Table 2.5).

For 2014 in general around the city, the level of atmosphere pollution belongs to high pollution, the IIIrd gradation. It was defined by the LF (largest frequency) value of equal 28% (high pollution), the SI (standard index) = 9 (high pollution).
During the period from 2011 to 2014, the general gross emission of atmosphere pollutants decreased from 147.2 thousand tons to 129.6 thousand tons, around the city Ust-Kamenogorsk it has decreased from 61.5 thousand tons to 55.7 thousand tons.

The total amount of industrial emissions in atmospheric air from the large enterprises in 2015 made 101,91,361,585 thousand tons, that is for 1,740,076,515 thousand tons (for 2.02%) less in comparison with the volume of emissions in 2014.

- volume of sulphurous anhydride emissions—56,723,435 thousand tons;
- volume of nitrogen dioxide emissions—21,123,432 thousand tons;
- volume of solid emissions—13,1,357,098,962 thousand tons;
- volume of carbon monoxide emissions—10,931038954 thousand tons (Fig. 2.7).

The reduction of emission volumes is caused by the fact that limits have decreased in comparison with 2014, and also there was reduction in the emission volumes of the large enterprises such as:

<table>
<thead>
<tr>
<th>Year</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS5</td>
<td>8.4</td>
<td>7.9</td>
<td>7.6</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Table 2.5 Dynamics of atmosphere pollution index (APS<sub>5</sub>) around the city Ust-Kamenogorsk/according to the Ministry of national economy of the Republic of Kazakhstan, Committee on statistics/

Fig. 2.7 The volume of industrial emission into atmospheric air from large enterprises for 2015
- LLP “Kazzinc” ZMPC (Zyryanovsky Mining and Processing Complex)—reduction of pollutant emissions in atmospheric air is connected with reduction of working hours of limy plant furnaces;
- LLP “Kazzinc” UK MC—reduction of pollutant emissions by 15% in comparison with last year is proved by stage-by-stage development of new Isesmelt technology at the reconstructed lead plant instead of agglomeration;
- JSC “Vostokmashplant”—decrease in production output;
- LLP “Ulba fluorine complex”—reduction of processed ore volumes, lack of overburden and mining works;
- LLP “Artel Diligent Miner”—decrease is caused by suspension of mining operations;
- LLP “Silicate”—small volume of products realization;
- LLP “Semey alloy”—lack of raw materials.


For 2015, according to the stationary network of RSE “Kazgidromet” observations, the city Ust-Kamenogorsk is characterized by the high level of pollution. In general, around the city, average concentration have made: sulfur dioxide—1, 6 shift-average MPC, nitrogen dioxide—1, 2 shift-average MPC, ozone—1, 8 shift-average MPC, other pollutants—didn’t exceed MPC (Fig. 2.8). The number of excess cases more than 1 maximum one-time MPC on the weighed substance is 37, on sulfur dioxide—790, on carbon oxide—78, on nitrogen dioxide—312, on nitrogen oxide—12, on ozone—4, on hydrogen sulfide—5849, on phenol—80 cases, on formaldehyde—1 case, and also more than 5 maximum one-time MPC excesses were observed on the weighed substance and hydrogen sulfide on the 1st time.

For 2015, according to the fixed stationary network observations of atmospheric air of the city Ridder, in general is characterized by the high level of pollution.

![Fig. 2.8](image) The average concentration of pollutants in the Ust-Kamenogorsk city for 2015 (MPC)
Altogether, around the city average concentration has made: ozone—1.9 shift-average MPC, arsenic—1.6 shift-average MPC, sulfur dioxide—1.2 shift-average MPC, other pollutants—didn’t exceed MPC (Fig. 2.9). Excess cases more than 1 maximum one-time MPC have been registered on sulfur dioxide—64, on nitrogen dioxide—32, on nitrogen oxide—72, on hydrogen sulfide—6894, on ammonia—47, on phenol 1 case, it was also observed more than 5 maximum one-time MPC on nitrogen oxide—32, on ammonia 13 times.

For 2015, according to the fixed network of atmospheric air observations of the city Semey is characterized by the increased pollution level. In general, around the city average concentration has made: ozone—1.3 shift-average MPC, phenol—1.9 shift-average MPC, other pollutants—didn’t exceed MPC (Fig. 2.10). Number of excess cases more than 1 maximum one-time MPC have been revealed on the weighed substances-1, the weighed particles RM-2.5–275, the weighed particles RM-10-173, on carbon oxide—14, on nitrogen dioxide—339, on nitrogen oxide—10, on ozone—32 and on hydrogen sulfide has made 2238, on ammonia—12 cases, also more than 5 maximum one-time MPC on the weighed particles RM-2.5–3 and on the weighed particles RM-10-2 cases.

For 2015, according to the fixed network of atmospheric air observations Glubokoe settlement, in general, is characterized by the increased pollution level. Altogether, on the settlement there was an average concentration of ozone 4.4 shift-average MPC, other pollutants—didn’t exceed MPC (Fig. 2.11). Excesses more than 1 maximum one-time MPC were observed to the weighed particles.
RM-2.5–71, to the weighed particles RM-10-32, on carbon oxide-1, on nitrogen dioxide—97, on ozone—4927, on hydrogen sulfide—283, on phenol—14 and on ammonia—4 cases.

The region has the high potential of natural resources, promoting broad development of industrial sector of economy. As a result, it bears for itself the whole range of environmental problems.

Following the results of 2014, at the republican level due to the emissions in the atmosphere pollutants, released from the stationary sources of the East Kazakhstan, the region is in the third place, by the quantity of pollutant emission sources—in the second. The volume of formed pollutants has exceeded 1.7 million tons per year.

At the same time, emissions of the substances polluting atmosphere, and releasing from stationary sources (per capita, kg) is equal to the 92.8 or 9th place in the RK (in the first place is Pavlodar region—807.4 kg).

Moreover, the tendency to decrease (Table 2.6) was outlined in the total amount of pollutant gross emissions.

Industrial and municipal activities lead to the considerable technogenic transformation of water balance in their territory. Along with the changes of hydrogeological conditions (flooding, drainage, sag and so forth) one of the main forms of the urban environment’s technogenic deformation is the pollution of surface and underground water industrial and household drains. Therefore, hydrogeochemical researches represent the necessary block of the urban environment complex analysis. In the territory of the city it is possible to differentiate the following main directions in an assessment of water streams pollution, characterizing water recirculation of the city as a difficult migratory system. The first—defining the structure of sewer industrial and municipal drains as the waste integrated indicators, which is coming in the liquid state to the surrounding urban environment and having various degree of cleaning completeness. Quite often, even the so-called conditionally pure drains contain the high concentration of pollutants, in ten and hundred times exceeding maximum permissible and are, in turn, an additional source of pollution, especially if they are dumped in open reservoirs (lakes, the rivers, reservoirs) coming to sewer network, collector channels, settlers, and etc. The chemical composition of such drains reflects an overall picture of the urban area condition.
At an adverse condition of the sewerage, they can also be a secondary source of pollution, mainly, of underground waters. The hydrogeochemical features of superficial drain waters in the cities significantly differ from background conditions. The chemical composition of waters, the degree of their mineralization, the contents and the ratio of macro components are changing. Researches of E.P. Yanina in Moscow, Podolsk and other cities, also researches of N.A. Barymova in Kursk, have shown that low-mineralized (200–400 mg/l) hydrocarbonate background waters in the cities become saltish (1 g/l and above), hydrocarbonate-sulfate, and during snowmelt, when deicing mixes are dissolved,—chloride sodium. On average in city superficial drains the content of chlorine, sulfate–nitrite—and fosfation,

<table>
<thead>
<tr>
<th>Region</th>
<th>Quantity of stationary sources of pollutant emissions, unit</th>
<th>Emissions of atmospheric air pollutants, thousand tons</th>
<th>Region share in the total amount of emissions for 2014, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012 r.</td>
<td>2013 r.</td>
<td>2014 r.</td>
</tr>
<tr>
<td>the EKR</td>
<td>18,592</td>
<td>140.1</td>
<td>124.9</td>
</tr>
<tr>
<td>Ust-Kamenogorsk</td>
<td>5899</td>
<td>61.5</td>
<td>55.8</td>
</tr>
<tr>
<td>Semey</td>
<td>4240</td>
<td>27.6</td>
<td>25.6</td>
</tr>
<tr>
<td>Ridder</td>
<td>811</td>
<td>9.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Kurchatov</td>
<td>199</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Abay</td>
<td>35</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Ayagoz</td>
<td>514</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Beskaragay</td>
<td>239</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Borodulikhin</td>
<td>704</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Glubokov</td>
<td>706</td>
<td>3.8</td>
<td>3.6</td>
</tr>
<tr>
<td>Zharmin</td>
<td>832</td>
<td>3.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Zaysans</td>
<td>502</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Zyryanov</td>
<td>1366</td>
<td>10.7</td>
<td>11.9</td>
</tr>
<tr>
<td>Katon-Karagay</td>
<td>63</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Kokpektyyn</td>
<td>201</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Kurchum</td>
<td>203</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Tarbagatay</td>
<td>95</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Ulan</td>
<td>319</td>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Urdzhgar</td>
<td>389</td>
<td>2.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Shemonakikhin</td>
<td>1275</td>
<td>5.0</td>
<td>2.6</td>
</tr>
</tbody>
</table>

2.2 Analysis of Major Factors in Formation and Migration of …
sodium and potassium in ten and hundred times more, than in background conditions. At the same time, on the firm asphalted surface the ionic drain sharply increases, which is 10 times more, than in natural and agricultural landscapes.

The presence of synthetic pollutants—phenols, oil products, the superficially active agents (SAA), polychloride biphenyls (PCB),—in some cases the heavy metals strengthening migration, due to the formation with them the soluble complex connections is especially characteristic for these waters. Therefore, unlike background waters in the polluted surface water of the city, there is an increase of soluble, mainly the organic forms of cadmium and nickel forming with SAA rather steady helatny combinations.

On the contrary, for mercury, copper, zinc and lead the share of technogenic suspension increases, in which they are mainly in geochemical mobile sorption and carbonate, organic and hydrooxidic forms that allows them to join the technogenic migration.

In this regard, particular importance is given to the third direction of hydrochemical estimates of the urban environment—studying of the final links condition of water recirculation waste and surface storm water (river and underground waters), the quality of which is deteriorating as a result of technogenesis, as well as the ground deposits (technogeneric muddy material), serving as the integrated indicator of reservoirs technogenic load in city boundaries.

The most part of the Big Altai territory belongs to the Ertis river basin. The main contribution to the pollution of this water system is made by metallurgical and mining and processing complexes, and also by the municipal services of the cities and working settlements (Table 2.7).

In the East Kazakhstan for 2014, there were 174 enterprises of water users; from them 48 enterprises have dumpings into superficial reservoirs. Water resources of the Ertis river basin are being exposed to the greatest pollution. The main sources of

<table>
<thead>
<tr>
<th>Water objects</th>
<th>Excess of toxic metals MPC mg/l³</th>
<th>Pollution sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Copper</td>
<td>Zinc</td>
</tr>
<tr>
<td>The Ulba River</td>
<td>10–12.5</td>
<td>10–12</td>
</tr>
<tr>
<td>The Glubochanka River</td>
<td>10–13</td>
<td>20–22</td>
</tr>
<tr>
<td>The Uba River</td>
<td>2–3</td>
<td>3–4</td>
</tr>
</tbody>
</table>

Table 2.7 Pollution by reservoir metals in a zone of influence of the area’s mining enterprises/according to EKRTDEP/
pollution are naked surfaces of excavations, dumps, tailing dams and product dams of concentrating factories, dump products and industrial drains of metallurgical, chemical-metallurgical, chemical, heat power and machine-building enterprises. In coincidence with the existing assessment, the ecological damage from pollution of the ground waters by the mining and concentrating enterprises and industrial dumps in Ust-Kamenogorsk makes 86 million US dollars.

The rivers Ertis and Uba within the studied region, have the 3rd class of water quality—moderately polluted with the main contribution from not enough purified mine waters, dump drainage waters and industrial waste waters. Pollution by copper, zinc, nitrogen nitride is being observed in the river Ertis. The Ulba is polluted by copper, and zinc. Because of the critical situation with the purification of city sewage, connected with a lack of treatment facilities design, capacity and prolonged terms of construction concerning the third turn treatment facilities (it has begun since 1989), insufficiently purified sewage to 200 thousand m$^3$ per day is dumped. The extensive area of underground water pollutions was created at the interfaced industrial sites of UK MC, UMP, UK CHPPs and adjacent to them from the north site is tailing dams of UMP. The level of underground water pollution in the area borders has reached on zinc, copper, lead, cadmium, selenium, manganese, arsenic of tens and hundreds of MPC, on fluorine, beryllium of 200–300 MPC, nitrates and nitrites of 3–30 MPC, nitrogen of ammonium 50 MPC (the UMP profile, an industrial site and tailing dams).

The river Bukhtyrma, having the 2nd class of water quality is pure, however after confluence of the Beryozovka river, the class of quality has decreased to the 3rd one. It is connected with the dumping of not enough purified mine waters of the Grekhovsky minery and concentrating factory of the Zyryanovsky MPP.

The rivers Breksa, Tikhaya, and Ulba, have respectively the 6th and 7th classes of water quality—extremely dirty and very dirty. In the river of Breksa, there is copper and phenol. In the river Tikhaya, there is copper, zinc, phenol. In the river Ulba, there is also copper, zinc and phenol. The main impact is exerted by mine and drainage waters of the Shubinsky minery, Talovskoye tailing dams and the SMR mineries, drainage water dumps of the № 2 Tishinsky minery of Ridder MPP JSC “Kazzinc”.

The Krasnoyarsk rivers, which have the 7th class of water quality, are extremely dirty. The significant contribution is made by crude mine waters of Verh-Berezovsky and Ertis mineries. There is high excess of MPC on zinc, copper, cadmium, and manganese. The Glubochanka river, having the 6th class of water quality, is very dirty. Main contribution: Belousovsky minery, EMP, refuse-fired plant of the Glubochanka settlement. It has local excess of MPC on copper and nitrogen nitride. It is lower than merge of the Ertis river and the Krasnoyarsk river, there is excess of MPC on copper, zinc, nitrogen nitride.

In the dynamics of dumping change concerning the qualitative composition of the basic pollutants into the EK reservoirs on copper, lead and cadmium, the main contribution was made by the JSC “Kazzinc” (67.9, 98, 64.4% respectively), on zinc—the Belousovsky MPP (54.8%) and the Berezovsky minery (34.6%).
Pollution by oil products is in many respects connected with a spill of aviation fuel in the Semey suburbs.

The Belousovsky concentrating factory in 1990 was discharged from the construction of the new tailings dam, that has considerably complicated warehousing of the current tails, which aren’t processed in any way, and dry warehousing of tails for the filling purpose of the developed space in mining has become complicated because of maintenance excess, involving soluble forms of non-ferrous metal minerals and toxic combinations.

The considerable pollution by mineral raw materials of geosystems is happening to the drainage and insufficiently purified and not purified mine waters. Because of the economic crisis, a part of fields were thrown, without accomplishing operation events, currently becoming the essential pollution source. This is Chekmar, Berezovsky, Novo-Berezovsky, Yubileino-Snegirikhinsky, Pokrovsky, Rulikh, Sugatoovsky, Belogorsk, Bakenny, Maralikhinsky, and Shemonaiikhy.

Due to the forthcoming working off of the stocks, the preservation of the following fields as Zyryanovsky, Grekhovsky, Akzhal, Dzherek, Mukur, Tishinsky, Bakenny, Belousovsky, Nikolaev, Ridder-Sokolnoye, Bakyrchik, Shubinsky, Zheskent, and Bolshevik will be required. Pollutants get to river system and soil, from there they go to the elements of biocenoses.

Problems with the household drains are connected generally with the shortage of power treatment facilities in Ust-Kamenogorsk and Semey, and also with the “Vodokanal” enterprise in Beryozovka settlement and condition of treatment facilities of the household sewerage in Nikitinka settlement, “Riddersky” sanatorium, Sekisovka village, Opytnoe pole settlement, Saratovka settlement, and Kozhokhovo settlement.

Besides, cadmium, copper, lead, zinc, selenium, thallium, and also arsenic are recorded in sewage. Their total annual volume in dumpings fluctuates from 26 to 57 tons/year. Further, downstream the Ertis accepts dumpings of Zyryanovsky lead plant (the Bukhtyrma river), the Belogorsk OMPE, CRCE (Casting and rolling complex enterprise), SCC (Service of central communications), Pipe Metallurgic Company (the Tikhaya and Ulba rivers), YCSP (the small rivers Glubochanka and Krasnoyarsk), industrial and municipal drains of Semey, which are “transported” then to Russia.

The Ertis river within the Rudny Altai is exposed to the most intensive pollution by heavy metals, where large technogenic biogeochemical province over 12.5 thousand m² was created. Water-soluble or firm products of drain are formed in the Ertis basin, which are deposited, either in final accumulation zone, or in transit zone. It should be noted, that there is a close hydraulic connection of river waters with the developed water-bearing horizons in river valleys. The rivers and specified water-bearing horizons of river valleys practically represent united water system.

Under natural conditions, the rivers can be drains and at operation of borehole riverside water intakes (infiltration) type, feed the water-bearing horizons and participate in the formation of the underground water’s operational reserves. For the specified reason, protection against bacterial and chemical pollution of surface
water can provide not only a normal sanitary and hygienic state of water currents and reservoirs, but also the required quality of water on water intakes from wells.

The technogenic influence danger to the person is connected with fact that the river Ertis is a source of water supply of 550 large settlements, more than 47 industrial and agricultural enterprises, and is used for irrigation of more than 247.4 thousand hectares of lands and 407.1 thousand hectares of jellied hay makings and estuaries.

Because of the enormous water area, the Ertis basin under technogenic influence has the majority of the Southwest Altai geosystems. Water pollution of the Ertis has a cross-border character; so, in an alignment near the Buran settlement, increased copper concentration (4 MPC) and oil products (5.5 MPC) are already noted, and it is caused by river pollution in the China territory as a result of copper-nickel plant activity.

In surface water of next areas of warehousing of RPP waste it is found in mg/dm³: Pb 0.24–0.7; Zn 110–200; Cu 1.5–150.

One of the main surface water pollutants of the Ulba subgeosystem is the waste water dump of № 2 Tishinsky minery. Average annual debit of this water is equal to 150 m³/h, yearly average content of zinc, copper and cadmium respectively mg/dm³: 158, 1.5, 0.5. It considerably exceeds the admissible concentration of metals in water, especially on zinc (to 50 threshold limit value MPC).

Drain of the river Uby isn’t able to self-clean, and pollution reaches its mouth, near Ust-Kamenogorsk, where the concentration of Zn makes 0.019 mg/dm³ (1.9 threshold limit value MPC), Cu 0.008 mg/dm³ (8 threshold limit value MPC).

Maximum concentration of heavy metals (copper, zinc) in open waterways is noted in the places of monitoring, located close to the operating enterprises of mineral and raw complex: the river Ertis—1 km is lower than the river confluence Krasnoyarka, the river Bukhtyrma—5.9 km is lower than mouth of the river Beryozovka, the river Ulba—near the Tishinsky minery (Table 2.8).

Despite some decrease in concentration of harmful substances in the river waters, which is connected with the production stagnation, their impurity over time remains rather high. Dumpings into the small rivers as Breksa, Ulba, Krasnoyarka, Glubochanka, and etc. are especially pernicious.

<table>
<thead>
<tr>
<th>Name of water object, point</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>the river Ertis (East Kazakhstan)</td>
<td>1.13</td>
<td>1.86</td>
</tr>
<tr>
<td>the river Ertis (Pavlodar)</td>
<td>0.96</td>
<td>1.8</td>
</tr>
<tr>
<td>the river Bukhtyrma (East Kazakhstan)</td>
<td>1.17</td>
<td>1.46</td>
</tr>
<tr>
<td>the river Ulba (East Kazakhstan)</td>
<td>5.20</td>
<td>5.0</td>
</tr>
<tr>
<td>the river Breksa (East Kazakhstan)</td>
<td>4.65</td>
<td>8.49</td>
</tr>
<tr>
<td>the river Tikhaya (East Kazakhstan)</td>
<td>7.88</td>
<td>6.08</td>
</tr>
<tr>
<td>the river Glubochanka (East Kazakhstan)</td>
<td>4.59</td>
<td>7.54</td>
</tr>
<tr>
<td>the river Krasnoyarka (East Kazakhstan)</td>
<td>8.54</td>
<td>11.51</td>
</tr>
</tbody>
</table>
The main reason for intensive pollution by sewage lies in the absence or imperfection of the existing treatment facilities, insufficient introduction of technologies with the closed water recirculation.

So, on the Rudnoaltaysky region, the amount of water in reverse and reuse makes only 34–38%, on the region Semey—3.3–6.8, and 80–90% considered as necessary.

The technogenic pollution of underground waters is rather localized and formed on sites of the enterprises activity, connected with the mineral and raw complex, power system, and agriculture. Underground waters of the considerable part of the Rudnoaltaysky region are polluted by toxic components. Especially, critical situation has developed in settlements, which are the centers of industrial production that makes significant problems of drinking water supply for population.

In comparison with 2014, the quality of water in the rivers Kara Ertis, Ertis, Bukhtyrma, Tikhaya, Ulba, Oba, Emel, Ayagoz, lake Markakol, Bukhtyrma reservoir, Ust-Kamenogorsk hasn’t changed significantly, but in the river Breksa, Glubochanka, and Krasnoyarka it has worsened.

In territory of the EKR, extremely high and high pollution are recorded in the following water objects: the river Ulba—27 cases of HP, the river Glubochanka—14 cases of HP, the river Krasnoyarka—14 cases of HP, the river Breksa—13 cases of HP and 1 case of EHP, the river Tikhaya—16 cases of HP.

Surface water quality of the Verkhniy Ertis basin water currents in the period of open water from April to October, 2015 on hydrobiological indicators is non-uniform. According to indicators of perititon development, it is possible to refer to category of the pure rivers, the river Breksa (background alignment), and the river Bukhtyrma. It is noted, that the highest values of saprobity index are on the river Breksa (below dumpings), river Tikhaya, river Glubochanka and river Krasnoyarka. Other studied waterways were characterized by moderate pollution.

In April-October, 2015 according to macrozoobenthos indicators, the rivers referred to category “pure” are: Bukhtyrma, Kara Ertis, Breksa, Tikhaya (background alignment), Ulba (in the area of Tishinsky mining) and Ulba (background alignment), the river of Glubochanka (background alignment) and the river Oba (background alignment). Less favorable situation has been noted on two points of the river Ertis “for 0.8 km is lower than UK hydroelectric power station dam” and in the river Krasnoyarka “for 1 km is lower than the hollow of the river Beryozovka; at the road bridge”, these rivers were characterized by the IVth quality class—“polluted waters”. Other waterways were estimated by the IIIrd class of water quality—“moderate polluted”.

In surface water of Bukhtyrma and Ust-Kamenogorsk reservoirs, during a research, acute toxicity cases hasn’t been revealed, however the small percent of the objects death test has been noted. On Ust-Kamenogorsk reservoir the percent of the objects death test varied from 3.3 to 26.6%, and on the Bukhtyrma reservoir mortality of water fleas has made from 3.3 to 43.3%.

By the analysis results on toxicity of the water tests, which were selected on waterways of the Verkhniy Ertis basin in 2015 during 12 months, the following picture was observed: waters of the rivers Kara Ertis, Emel, Ertis, Bukhtyrma, Oba,
Ulba (Ust-Kamenogorsk), Glubochanka (background alignment), Krasnoyarka (background alignment) had no sharp toxic effect on live organisms.

The most unfavourable situation has been noted on the river Ulba (Tishinsky minery). On an alignment cases of acute toxicity “100 m are higher than dumping of mine waters of the Tishinsky minery; 1.25 km are lower than the merge of the river Gromotukhi and Tikhaya” have been registered in February, May, June, August, September and November. The objects death test varied from 63.3 to 100%. On the second alignment “4.8 km are lower than dumping of mine waters of the Tishinsky minery” acute toxicity wasn’t observed only in March, during other periods of research concerning water fleas death made from 50 to 100%.

On the river Tikhaya, on an alignment “within the city; 0.1 km higher than the Bezimannyi stream confluence” the phenomena of acute toxicity have been registered during the second, third and fourth quarter, except December. The objects death test during this period has made from 50 to 100%. On the second alignment only one case of acute toxicity in May has been registered, water fleas death has made 100%.

On the river Breksa, on an alignment “within the city; 0.6 km higher than the mouth of the river Breksa” acute toxicity was observed for the entire period of the research, except March, April, October and December. Water fleas death varied from 80 to 100%. On “background alignment”, in June one case of acute toxicity has been registered concerning the objects death test, and it has made 57%.

On the river Glubochanka, on an alignment “0.5 km are lower than dumping of economic-fecal waters treatment facilities (t/f) of the Belousovsky; at the road bridge” during research three cases of acute toxicity were registered: in May, June and August months, objects death test varied from 70% to 90%. One case of the objects death test on “final alignment” has been noted in May, the percent of water fleas death has made 66.7%.

On the river Krasnoyarka, on an alignment “1 km lower than the hollow of the river Beryozovka; at the road bridge” acute toxicity wasn’t observed only in February, April, May and December months, during other period objects death test varied from 50% to 100%.

In territory of the EKR extremely high and high pollution are recorded in the following water objects: the river Ulba—27 cases of HP, the river Glubochanka—14 cases of HP, the river Krasnoyarka—14 cases of HP, the river Breksa—13 cases of HP and 1 case of EHP, the river Tikhaya—16 cases of HP.

Information on the actual volumes of dumpings is provided in the table of 16 rivers/according to the Newsletter on state of environment in the Republic of Kazakhstan for 2015.—Astana: RSE "Kazgidromet", 2016.—236 P./(Table 2.9).

The volume of the dumped oil products with sewage in water objects of the EKR has made 0.65132067 thousand tons per year.

The main technogenic impact on natural situation of the area and, including, underground waters, is rendered by mining enterprises, power and metallurgical industry of the Rudny Altai and, generally agricultural production (the livestock production and grain farm, the enterprises processing agricultural production), the industry and separate mining enterprises in valley of the river Ertis and its inflows,
in the east part of the Kazakh hillocky area and intermountain hollows of the Saur-Tarbagatai.

The main sources of the underground waters pollution are:

- mine waters and minery dumps (Shemonaikhinsky, Kamysbin, Nikolaev, Ertis, Belousovsky, Snegirikhinsky, Chekmar, Ridder-Sokolsky, Tishinsky, Maleevsky, Zyrayanovskv, Grekhovsky, Ognevsky, Belogorsk, Kendyrlyksky, Akzhalsky MPP, Zhezkentsky minery);
- concentrating factories (Nikolaev, Berezovsky, Belousovsky, Leninogorsk, Zyryanovsky, Ognevsky);
- metallurgical, fuel-energy enterprises (Ertis copper plant, Ertis chemical steel plant, zinc-lead plant, titanium-magnesium plant, Ust-Kamenogorsk and Sogrinsky combined heat and power plant, Leninogorsk zinc-lead plant);
- airport, meat-processing plant, felting and felt plant, other enterprises of the industry in Semipalatinsk (leather and fur enterprise, gas equipment plant, Novoshulbinsky creamery, locomotive depot, meat-processing plant and the dairy shop in the city Ayagoz, Sergiopolsky beer factory);

| Table 2.9 Pollution of water resources and dumpings of pollutants with sewage |
|---------------------------------|-----------------|-----------------|
| Information on the actual volumes of dumpings | 2015 year | 2014 year |
| Industrial dumpings | Volume of water disposal one thousand m$^3$ | 54790.776 | 46059.0172 |
| | Volume of pollutants one thousand tons | 41.5 | 103.25 |
| Economic and household waste waters | Volume of water disposal one thousand m$^3$ | 63667.837 | 67888.8972 |
| | Volume of pollutants one thousand tons | 111.828 | 49.27022 |
| The emergency and not allowed dumpings | Volume of water disposal one thousand m$^3$ | 512.2427 | 25.204 |
| | Volume of pollutants one thousand tons | 0.105875 | 0.0064158 |
| In total (all above-mentioned dumpings) | Volume of water disposal one thousand m$^3$ | 118970.8557 | 113973.1184 |
| | Volume of pollutants one thousand tons | 153.433 | 152.526 |

for individual cities/Environmental protection and sustainable development of Kazakhstan (2011–2015)/Statistical collection/Committee on statistics of the Ministry of national economy of the Republic of Kazakhstan/
– livestock enterprises (Volchansky, Shemonaiikhinsky, Maleevsky pig factory farms, Torkhanovsky, Leninogorsk, Solovyevsky, Srednegornensky, Pervorossiysky, Yubileinyi, Kamyshev cattle complexes, Cheremshansky, Ust-Kamenogorsk and Komsomol poultry farms, Semipalatinsk poultry farm, cattle complex in Borodulikha, Novobazhenovo, Semenivka, Dmitriyevka, Podnebesnyi, Krivinka, Turksib, Beryozovka, Chugulbay, Mirnyi, Ivanovka, Uruzharsky);
– filtration fields of the cities and other large settlements;
– influence zone of the Semipalatinsk test site.

Polluting components of the specified enterprises are copper, zinc, lead, selenium, manganese, cadmium, ammonia, phenols, and livestock complexes—nitrates and ammonia.

Near Semipalatinsk in the underground waters, the high content of oil products is noted, leading to extremely dangerous extent of pollution, especially if to consider that underground waters have quite close connection with the local basis of unloading here—the river Ertis. Unloading of the underground waters, strongly polluted by the oil products to the river or overflow, to the large water intakes located here, can have catastrophic consequences.

In general, in the area there was a critical situation on underground waters pollution for drinking usage. Auras of pollution have begun to reach such sizes, that in their zone there was 17 of 72 water intakes. In the pollution centers of the JSC “Ulba metallurgical plant”, “Ust-Kamenogorsk titanium-magnesium plant”, UK MT “Kazzinc” works for the choice of operational wells optimum placement for the polluted stream interception was carried out.

Now, the activities on the polluted stream interception of the pollution center of the JSC “Ust-Kamenogorsk titanium-magnesium plant” are being carried out, and they have begun since 2005 in the territory of the JSC “Ulba metallurgical plant” tail economy. The activities aimed at the polluted stream interception in territory of an industrial site and dump economy of the UK MT “Kazzinc” enterprise are practically not carried out. Reconstruction of drainage water intake, which was recommended in 1997 hasn’t been executed (The program of development of the East Kazakhstan Region territory on 2016–2020; Environmental protection and sustainable development of Kazakhstan 2011–2015).

For the decrease in the extent of underground waters pollution, it is necessary to make:

– the analysis of water consumption balance and water disposal of the enterprises for justification of use or drainage waters dumping at the polluted streams interception by reduction of drinking water consumption for the technical purposes, water recirculation development, termination of dumping into the city sewerage of conditionally pure and intensively polluted because of metals, oil products industrial drains without local cleaning;
– the annual assessment and holding analysis of the water preserving actions are obligatory, if necessary recommendations about their improvement are proved;
– the careful inspection of protective waterproofing concerning water bearing communications of reverse water supply and technological knots on sites of pollution auras;
– the reduction of the underground waters pollution concerning alluvial deposits due to decrease of the polluting components carried out from the burial grounds and industrial dumps by their recultivation. The intensity of the polluting components carrying out at almost unlimited number of the easily saved-up soluble waste is defined by the intensity of food infiltration with atmospheric precipitation. The exception of atmospheric food will allow “to preserve” waste;
– the construction of reliable barriers in the closing pollution aura alignment with the trial pumping organization of the polluted underground waters and their cleaning before maximum-permissible dumpings.

Additional works are necessary for the justification of drainage water intakes and drains utilization in order to decrease in extent of pollution in the centers such as the Tishinsky minery (Ridder city) and Zyryanovsky tailings dam.

The main components, polluting underground waters are: cadmium, thallium, oil products, manganese, cyanides, selenium, iron, ammonia, lead.

Macrogosystems integration in the river basin Ertis is caused by the lateral movement of the substance, subordinated to the general process of geographical drain from the nival-glacial zone of drain formation to the delta. Each rank of natural complexes, concerning topological dimension, has certain fluctuation limits of substance amounts in components. To all ranks of geosystems corresponds concrete landscape ranks with substance reserves, which quantitative parameters define extent of substance migration in the conditions of moistening deficiency and depend on the drain module. The aforesaid, explains the spatial differentiation of landscapes concerning transit zones, feathering out, the drain dispersion and the intensity of their functioning, depending on the intensity of the chemicals’ movement, technogenesis loading.

Soils of the region are the subject to technogenic pollution. From them, the most fully technogenic pollution of soils by heavy metals is studied in the Kazakh part of the Big Altai. Here mainly technogenic abnormal field is mapped in the central and northwest parts of region, where the main industrial facilities are localized, making the negative impact on the environment.

The soil cover of the city is a difficult and non-uniform natural and anthropogenous biogeochemical system. In the background of artificial technogenic formations such as asphalted streets, highway areas, there are anthropogenously changed and natural soils (yards, parks boulevards, and waste grounds). Products of the technogenesis drop out on the land surface and are collected on the top horizons of soils, changing their chemical composition and joining again the natural and technogenic cycles of migration. By the geochemical character change of the natural and poorly modified city soils of the East Kazakhstan, in reference to the background soils of the region, it is possible to judge about the extent of their technogenic transformation (Fortescue 1985; Moiseenko 1989; Felenberg 1997; Protasov 2000).
The essential value for the formation of the geochemical background of the East Kazakhstan cities’ soils have the duration and industrial development nature of the city in historical time, i.e. since the XVIII century, when the first mines began to be developed.

According to the impact effect on city soils, the technogenic substances can be united in two groups. Pedogeochemically active substances prevail in weight emissions, and change alkaline-acid and oxidation-reduction conditions in soils. These are generally nontoxic and slightly toxic elements with high percentage abundance—iron, calcium, magnesium, alkalis and mineral acids. At the achievement of certain limit, acidulation or alkalifying affects soil flora and fauna. Some gases are also pedogeochemically active, for example, the hydrogen sulfide and methane, changing an oxidation-reduction situation of migration. Biochemically active substances affect, first of all, live organisms. These are usually typomorphic for each production type, which are highly toxic pollutant with low percentage abundance (mercury, cadmium, lead, antimony, selenium, and etc.) forming auras, more contrasting concerning the background, and constituting danger to biota and the person.

In the cities, intake of dust on surface is much more, than in the natural background landscapes. Iron, calcium and magnesium prevail in city dust macrocells. Two geochemical consequences of athmotecnogenic dust supply on the city territory are connected with the ferruginization of soils which is almost not influencing alkaline-acid and oxidation-reduction conditions of elements migration and the carbonatization of soils leading to the increase in their alkalinity, saturation of the absorbing complex bases, binding of many metals in almost insoluble carbonates. At considerable and long intake of carbonate dust to sour and neutral soils, there is a change of landscape water migration class. Sour, sour gley \((H^+ , H^+ − Fe^{2+})\), neutral and neutral gley \((H^+ − Ca^{2+} , H^+ − Ca^{2+} , Fe^{2+})\), classes are transformed in calcic and calcic gley \((Ca^{2+} , Ca^{2+} − Fe^{2+})\), classes of water migration.

Alkaline technogenic transformation of city soils leads to change of their buffer action, increase in absorbing ability, reduction of carrying out possibility and migratory ability of many pollutant and first of all, heavy metals. In steppe and desert zone processes of soils carbonatization are less noticeable. Pollution of city soils by macro and micro-elements is followed by the transformation of soil and geochemical structure of the territory. First of all, radial geochemical differentiation of soil profile due to pollutant accumulation in the top horizons sharply increases. In podsolic and gray forest soils, technogenic accumulation shades the eluvial and illuvial background profile differentiation. On the contrary, in black earth uniform distribution of metals is replaced by the superficial and accumulative one. Athmotecnogenic pollution of autonomous soils, strengthening of storm superficial drain, flooding by the polluted ground waters defines the accumulation of toxic substances in the subordinated landscape soils. In this regard, the interfaced types of soil and geochemical catenas prevailing in the cities background conditions are replaced by the sharply differentiated accumulative types. The unevenness of soil
cover pollution of the cities leads to the casual ratios emergence of chemical elements between soils of the autonomous and subordinated landscapes.

Detailed researches of city “relief” influence have shown that the residential industrial buildings serve as mechanical barriers for air migrations of the technogenic substances, and near them in soils more contrast anomalies of pollutant are formed. Concentration of the industry, power system, automobile transport and municipal waste in the cities leads to the formation of heavy metals and other minerals of technogenic anomalies in the city soils.

The prevailing impact on land resources condition of the East Kazakhstan region is made by the enterprises of agriculture, mining industry, and power system.

On the basis of data, submitted by nature users of SI Ecology Department in the EKR, works on registration and accounting of pollution sites are carried out. At the moment, in total 282 pollution sites are registered across the East Kazakhstan region.

For the spring period in Ust-Kamenogorsk, excess of MPC on concentration of heavy metals has been recorded in the following districts of the city:

- at the crossing of Traktornaya street and Abay prospectus (1 km to south-east from an industrial site of JSC “Kazzinc”) the concentration of cadmium is 9.0 MPC, lead—5.1 MPC, copper—1.8 MPC, zinc—1.6 MPC;
- at the crossing of Rabochaya and Bazhova streets (1 km from JSC “Kazzinc”) the concentration of cadmium makes 31.4 MPC, copper—21.2 MPC, lead—14.0 MPC, zinc—13.3 MPC;
- near the highway of Lenin avenue (the area of RSU, 3 km to south-west from JSC “Kazzinc”) the concentration of cadmium—11.2 MPC, lead—4.6 MPC, zinc—1.2 MPC;
- near the “Blue Lakes” park (3 km from JSC “Kazzinc”) the concentration of copper is 2.2 MPC, zinc—1.6 MPC, cadmium—1.2 MPC;
- in the territory of № 34 school (3 km from JSC “Kazzinc”) the concentration of lead makes 3.5 MPC, cadmium—3.2 MPC.

In soil tests the content of chrome was in normal limits.

For the autumn period in Ust-Kamenogorsk, the excess of MPC on concentration of heavy metals has been recorded in the following districts of the city:

- at the crossing of Traktornaya street and Abay prospectus (1 km to south-east from an industrial site of JSC “Kazzinc”) the concentration of cadmium—10.2 MPC, lead—2.5 MPC, copper—1.5 MPC, zinc—2.1 MPC;
- at the crossing of Rabochaya and Bazhova streets (1 km from JSC “Kazzinc”) the concentration of cadmium—14.2 MPC, copper—6.2 MPC, lead—7.1 MPC, zinc—9.6 MPC;
- near the highway of Lenin avenue (the area of RSU, 3 km to south-west from JSC “Kazzinc”) the concentration of cadmium is 5.3 MPC, lead—4.3 MPC, zinc—1.8 MPC, copper—1.5 MPC;
– near the “Blue Lakes” park (3 km from JSC “Kazzinc”) the concentration of cadmium—2.6 MPC, lead—1.9 MPC, zinc—1.1 MPC;
– in the territory of № 34 school (3 km from JSC “Kazzinc”) the concentration of cadmium—6.4 MPC, lead—4.2 MPC.

In soil tests the content of chrome was in normal limits.

For the spring period in Ridder, excess of MPC on the concentration of heavy metals has been recorded in the following districts of the city:

– around park zone the concentration of cadmium—12.6 MPC, lead—10.6 MPC;
– near the sanitary-protection zone of Zinc plant, the concentration of cadmium has made 9.8 MPC, lead—9.6 MPC, copper—2.2 MPC, zinc—1.2 MPC;
– near the sanitary-protection zone of Lead plant, the concentration of cadmium—25.0 MPC, lead—11.7 MPC, copper—2.9 MPC, zinc—1.9 MPC;
– around the territory of № 3 school, concentration of cadmium—29.0 MPC, lead—11.7 MPC, copper—2.8 MPC, zinc—1.7 MPC;
– near the most busy highway, concentration of lead is 8.8 MPC, cadmium—1.2 MPC.

In soil tests the content of chrome was in normal limits.

For the autumn period in Ridder, excess of MPC on concentration of heavy metals has been recorded in the following districts of the city:

– around park zone concentration of cadmium—2.5 MPC, lead—4.1 MPC;
– near the sanitary-protection zone of Zinc plant, where concentration of cadmium has made 9.2 MPC, lead—1.3 MPC, copper—9.6 MPC, zinc—1.4 MPC;
– near the sanitary-protection zone of Lead plant, where the concentration of cadmium comprises 15.1 MPC, lead—21.5 MPC, copper—11.8 MPC, zinc—3.1 MPC;
– around the territory of № 3 school, the concentration of cadmium—6.0 MPC, lead—6.4 MPC, zinc—1.6 MPC;
– near the most busy highway, concentration of lead—7.6 MPC, cadmium—5.6 MPC, zinc—4.3 MPC, copper—4.2 MPC.

In soil tests the content of chrome was in normal limits.

For the spring period in Semey around the № 3 school and in the highway territory of Kabanbai batyr street, the concentration of copper respectively exceeded norm—5.4 and 5.0 MPC.

For the autumn period in Semey, chrome concentration were in limits of 0.002–0.3 MPC, cadmium 0.1–0.5 MPC, zinc—0.4–0.9 MPC, lead—0.4–0.6 MPC and copper—0.2–3.5 MPC. Near the sanitary-protection zone of “Semeycement”, the concentration of copper have exceeded the standard—3.5 MPC.

In the region as of 01.01.2016 year, 161 subsoil users, and 13 water users are registered.

In gold mining, there are 9 foreign and 15 domestic companies, which have contracts. The large ones among them, respectively are: the JSC FIC “Alel” (financial and investment corporation), the JSC “Charaltyn”, LLP “Kazzinc”,
LLP OMC “Andas-Altyn”, JSC “Semgeo”, LLP “Toskara”. JSC “Kazzinc” and LLP “Vostoktsvetmet”, SLLP “Ore mining enterprise “Sekisovskoe” company of “Hambledon Mining Company Limited” are the largest ones in the subsurface management area on polymetallic ore. LLP «Satpaevsk Titanium Mines LTD» (LLP «STM») is engaged in extraction of ilmenite at working off of the Satpayevskiy field; the JSC “Ulba metallurgical plant” extracts fluorite on the Karadzhalsky field.

Solid combustible minerals are extracted by four subsoil users, from them the largest one is LLP “Karazhyra LTD”.

Domestic company the LLP “TEMP” (Temirtau electric metallurgical plant) is engaged in extraction of ferrous metals (manganese).

The bulk of subsoil users are engaged in popular minerals extraction: these are bentonite clays, volcanic tufa, gabbro, clays, granites, diorites, limestones, quartz sand, ceramsite clays, brick clays, sand-gravel mixes, table salt, porfiritas, and construction stone.

In the area, also production of mineral water by three subsoil users is conducted: LLP “Zaysan salary”, SP Churkumbayev M.S., LLP “Rakhmanovskiyi klyuchi”.

Part of subsoil users in 2015 didn’t carry out production activity for various reasons (LLP “Arman”, LLP “Semgeo”, LLP “Zherek”, LLP Ore mining company “Andas Altyn”, and etc.).

During work on mining and construction of subsurface use facilities, removal and preservation of fertile layer is made for the subsequent use for land reclamation, according to requirements of the RK Ecological code 220 articles. The need for removal and storage concerning soil and fertile layer is defined in materials of the soil research territories, conducted at withdrawal of the land plots [163–170].

For the purpose of decrease in the volumes, placed in environment of the mining subsoil users waste in region, they use the overburden and containing breeds for filling of fulfilled pit space. The LLP “Karazhyra LTD”, SLLP “OME “Sekisovskoye” of the “Hambledon Mining Company Limited” (to decipher), LLP “Vostoktsvetmet”, LLP “Kazzinc” of RMPE, ZMPE use for layings in the fulfilled mine development production wastes.

The systematic work on filling of the fulfilled pit part with overburden breeds is carried out by LLP “Karazhyra LTD”, which realizes coal mining on the homonymy field. Specified enterprise distributes the overburden breeds, forming by production of mining operations to the fulfilled pit space (an internal dump), thereby the technical stage of land reclamation has been accomplished.

According to the qualification of the Ministry of environmental protection of the RK, on pollution of soils, underground and surface water, vegetation, these settlements such as the Glubokoe, Belousovka, Verkhneberezovskiy, Chermashanka, and Uvarov are possible to refer to ecological catastrophe zone.

Near the Ertis river course, the intensity of soils of technogenic pollution by 2–3 times exceeds the background. In the Pervomay settlement, soils pollution by 4–32 times exceeds the background, and in the Ust-Talovka settlement—by 16–32 times. In geosystems of lower current of the river Naryn, there was an observation that soils pollution by 2–16 times exceeds the background.
Radiation condition. First of all, this is the influence of SNTS and enterprises of nuclear industry complex in Abralinsky district of the former Semipalatinsk region and part of territories of the Pavlodar and Karaganda regions; its area makes about 618 thousand km². Here 470 nuclear explosions, from them 26 is overland, 87 is air and 357 is underground, including the first Soviet nuclear explosion with power of 20 kg plutonium bomb were conducted (on August 29, 1949 year). SNTS was closed by the Decree № 409 of the President of Kazakhstan in August 29, 1991 year. The SNTS occupies the space of 18,500 km².

Considering the improvement of the environment quality, which was the result of production declining, and taking data on the total quantity of pollutants emission and drain for 1996–1998, it is possible to tell that for the stabilization of environment quality, it is necessary to limit the total quantity of pollutant emissions from the stationary sources of pollution within 250–300 thousand tons per year. But in this assessment, qualitative composition of the thrown-out substances isn’t considered.

The complex mineralogical composition of the raw materials, processed at the enterprises of nonferrous metallurgy and low maintenance, in their useful components cause the biggest specific exit of waste in the extracting branches. The costs of their transportation and warehousing often exceed 40% of valuable components extraction cost. In dumps of production chain “production—enrichment-metallurgy” more than a third of non-ferrous and precious metals extracted with ores is lost, and huge reserves of various potential construction raw materials are frozen.

For many years of the enterprises functioning concerning mineral-raw complex in region, the huge number of enrichment waste and metallurgical conversion of ores has been accumulated.

The municipal solid waste is the heterogeneous mixes, which are differing on qualities and fineness, and formed in the process of people activity. Many of them drop out or destroyed as useless or undesirable. Their basis consists of waste paper (20–40% on weight), food waste (25–40%), textiles (4–6%), glasses (4–6%), ferrous and non-ferrous metals (2–5%), rubber (2–4%), polymers (1–2%), and etc. The general content of organic substances in waste fluctuates from 50 to 80% counting on absolutely solid, and humidity fluctuates depending on season of year within 45–60%. Besides, there is a seasonal change in morphological composition of municipal solid waste (Bazarbayev et al. 2002; Geosistemnyiy monitoring 1986; Glazovskaya 1988).

The enrichment waste and ores processing have lately begun to be used strenuously in construction repair work not only in the Ertis river basin, but also outside Kazakhstan. Especially, widely specified raw materials find application in the cities of Ridder, Zyryanovsk and their vicinities. So, for example, “the easy fraction”—waste of polymetallic ores enrichment in heavy suspensions of Tishinsky and Zyryanovsk concentrating factories—goes for highways dumping and repair, railway embankments, access roads, finds application in individual construction of houses, garages, garden lodges and many other. Chashinsky storage tails in Ridder city are used for preparation of plaster solution, clinker is used to “improve” a
roadbed in the cities, on again under construction routes. Levels of heavy metals concentration—Pb, Cu, Zn, Ag, Ba, Mo, Sn, Cd, Sb—in widely used MB (main base) are rather high, that promotes intensive pollution of soils in roadside zones and atmosphere secondary pollution.

Principle solution of MSW problem concludes in development of low-waste and waste-free industrial technologies—the basic principle of resource use, in effective and complex use of natural resources, drawing into economic circulation of production wastes and consumption.

For MMF (man-made mineral formation) the positive forecast will be connected with the consecutive reduction of dump product volumes that can be reached as directly by elimination of the saved-up dump products (by their repeated processing), and due to the reduction of new released volumes of waste (and the related toxic substances) at the production and processing of mineral raw materials. It is possible only at the introduction of complex low-waste technologies of mineral raw materials processing.

Toxic substances pollution of atmosphere comes from MMF due to dusting of waste stores: dumps of off-balance ores, slags, breeds, and drained tailing dams. Considering large reserves of mineral raw materials in East Kazakhstan, the essential sources of pollution are the opened ones, but not used in fields. Dusting from the destruction of all technogenic waste in the East Kazakhstan makes about 111 thousand tons per year. Dust contains such toxic components as lead, zinc, copper, cadmium, mercury, selenium, tellurium, arsenic, tin, and etc. There is no representative data on the distribution and stay forms in stores of dump products concerning toxic elements. Moreover, the available data (passport of waste) on the structure of dump products in essence don’t reflect the current real state, since these data characterize the general structure of dump products at the time of accumulation in stores. Considering that most storages of waste exist decades, it is competent to expect very essential changes in the distribution and forms of finding dump product components. So, for example, in tailing dams and in dumps of off-balance poly-metallic ores quite intensive electrochemical reactions promoting the formation of soluble connections in number of elements, including toxic proceed. Also long (decades) safety in a liquid phase of the tailings dam of cyanides was found. However, such researches have sporadic character and, in this regard, now it is impossible to determine the conditions of toxic substances migration from the stores in the environment components, and the areas of their dispersion and concentration.

The total waste stocks of mining and metallurgical production of non-ferrous, rare, precious and radioactive metals are already comparable to stocks corresponding rather large-scale deposits. Along with the main useful components at dump products, there are numerous element satellites, in some cases being of independent value. At the same time, both among the main, and accompanying components there are toxic elements (and their connections) in significant amounts such as lead, zinc, cadmium, mercury, arsenic, antimony, selenium, sulfur, and etc. The last in processes of production and processing of ores collect in storages, which goes to the environment (soil, water, air, and biota). Available archival and
literature data, and also results of control approbation components, concerning the environment, show that the soils and waters contain complex of toxic components in the quantities considerably, exceeding near the stores of production waste and processing of polymetallic ore, MPC. So, the content of arsenic, cadmium, lead, zinc, mercury, etc. in some cases exceeds MPC by 3–5 times. For the waste stores, taken at production and processing of gold ores, the main pollutant of water and soils are arsenic and tin, which content is quite often exceeded here by MPC in ten times. Besides, here usually there are mercury and cyanides (Weyant 1997; Mage and Zali 1992; Vorobeychek 1994).

In influence zones of waste storages in the rare metal productions as sources of radiation hazard, the main pollutants of soils and waters are low-toxic elements: lithium (Li); beryllium (Be); rubidium (Rb); caesium (Cs); thallium (TI); niobium (Nb); cobalt (Co). Due to presence of radioactive isotopes $^{22}$Ra, $^{137}$Cs and $^{60}$Co in the influence zones of rare metal stores is distinctly shown the increased radioactivity (gamma rays ranging from 60 to 500 mcR/h). The sharply increased radioactivity is noted in the influence zones of waste stores in the productions, which are connected with processing of radioactive ores (to 5000 and more than mcR/h). In the region territory, except registered 27 storages of radioactive waste, there are numerous points of raised radiation connected with various technogenic sources. In the territory of Ust-Kamenogorsk, there are about 400 anomalies studied in detail for only 12%.

The main large enterprises of nonferrous and ferrous metallurgy of the Northeast industrial region, which activity depends on water resources of the Ertis river are listed below:

- Ust-Kamenogorsk lead—zinc plant;
- Ridder lead—zinc plant;
- Zyryanovsky lead plant;
- Ertis polymetallic plant;
- East Kazakhstan copper—chemical combine;
- Zhezkent mining and processing plant;
- JSC “Ispat-Karmet”;
- JSC “Kazzinc”;
- JSC “Ust-Kamenogorsk titanium and magnesium plant”.

The main characteristics of some plants.

1. Ust-Kamenogorsk lead—zinc plant

Productive power:

- Electrolytic zinc—186,400 tons per year (total amount in the Republic of Kazakhstan 292,900 tons per year);
- Purified lead—145,900 tons per year (total amount in the Republic of Kazakhstan 326,100 tons per year);
- Electrolytic copper—40,000 tons per year.
The number of employees is over 9000 people.

Raw materials are bought from Yubileinyi - Snegirikhinsky minery and others in the Republic of Kazakhstan.

The plant is complex, color and metallurgical, and has melting factories of lead, zinc, copper and other precious metals and produces such metals as zinc, lead, copper, gold, silver and cadmium, both the synthetic and processed products from zinc and lead, also includes the Ertis copper-chemical combine.

2. Ridder lead—zinc plant

The plant is located on the river Ulba at the distance of 80 km from Ust-Kamenogorsk in the northeast direction and engaged in thorough production from minery before receiving the cleared products. It consists of 4 mineries: Tishinsky, Ridder, Lenin and Shubinsky mineries; 2 concentrating factories (5.4 million tons per year); the lead-melting factory on production of lead on the basis of accumulator battery skrap processing. The rights of economy management are transferred to the “Ridder Investment”. As the final products, it produces such metals as zinc, copper, lead, and also precious metals, sulfuric acid, cadmium, zinc-aluminum alloys, antimoni-lead alloys and other metal products.

3. Zhezkent mining and processing plant

Among 6 plants of the East Kazakhstan region, it is the only one located in territory of the former Semipalatinsk region, but, nevertheless, it is located close to border with the former East Kazakhstan region. Moreover, it is close to the border with the Russian Federation. Also, it includes underground minery, concentrating factory under construction, mechanical-repair manufactory, pit on stowage material extraction and other enterprises. The main industrial center is the settlement of Zhezkent city type.

4. Zyryanovsky lead plant

This plant is one of the largest mining enterprises in the Republic of Kazakhstan and is located in Zyryanovsk (population—51,500 people), at the distance of 160 km in the southeast direction from Ust-Kamenogorsk. It has three mineries: Zyryanova, Grekhovsk and Maleevsk, and concentrating factories. Enriched ores almost completely are delivered in the melting plants of Ust-Kamenogorsk.

5. Ertis polymetallic plant

The plant is located in the northwest district of Ust-Kamenogorsk. It consists of Belousovky minery and concentrating factory (at the distance of 25 km in the northern direction from Ust-Kamenogorsk), the Ertis minery (at the distance of 12 km in the east direction from Berezovsky) and Berezovsky concentrating factory
6. East Kazakhstan copper—chemical combination

The plant had three mines of the open-cast mountain mining Nikolaev, Shemonaikhy, Kamushinsky, however, in 1994 it completed its production in Kamushinsky mine and, now, the plant is extracting ores in two mines. Ores are difficult polymetallic, enriched at the Nikolaev concentrating factory. The plant produces enriched copper, zinc ores and mixed copper-zinc ores. Each of these plants makes contribution to water pollution of the Verkhniy Ertis river basin. At the same time, the most characteristic pollutants are as following: copper, zinc, lead, aluminum, mercury, and oil products. Besides, a large amount of pollutants arrives from the cities of Ust-Kamenogorsk and Ridder together with sewage.

The greatest anthropogenous load on water resources of the Ertis river basin is the share of riverheads within the East Kazakhstan region. Here the largest enterprises of nonferrous metallurgy of the Republic of Kazakhstan are concentrated, which are known to be the main pollutants of the Ertis river and its inflows.

The characteristic feature of all these enterprises is the low level of use concerning systems reverse water supply.

Copper, zinc, lead, oil products, phenols, and etc., dumped with sewage in water objects can be considered as the main pollutants.

In the initial section of the river Ertis within the territory of RK, there are no direct dumpings from industrial enterprises. Hydrochemical mode of the river Kara Ertis in alignment of the Buran village is formed due to washing away and dissolution of rocks, superficial drain from reservoir in the territory of the PRC, but a certain impact on water quality is exerted by the polluted superficial drain, and dumpings from agricultural fields in the territory of the PRC. In waters of the river Kara Ertis, arriving from the territory of the PRC, the concentration of 1–2 MPC contain oil products and nitrates, besides, there are copper, zinc and other elements.

In recent years, some depression of the general impurity level and maintenance of separate pollutant elements becomes perceptible, however there are cases of extremely high level of water pollution in the river Ertis, mainly by copper and zinc (to 100 MPC). In intra annual change of water quality connected with the accurate regularities has not been revealed and impurity level augmentation during separate seasons and months are bound mainly to the volley dumping of sewage.

Technogenic factors operating on geosystems of the East Kazakhstan influence also the human beings. Considering population ageing at deterioration of ecological situation, it is necessary to expect further augmentation of disease rate, disability and mortality from malignant neoplasm, especially from lung cancer, trachea and bronchus among men.

According to EKRTDEP, about 95% of the Kazakhstani populations in Big Altai live in the territories, which are in varying degree ecologically unsuccessful and,
about 70% of inhabitants are concentrated in the settlements situated in the centers of industrial production, the cities qualified as zones of ecological catastrophe.

According to the data collected above, there was defined an ecological situation in the East Kazakhstan and possible development of the situation in the future as a general condition image.

Thus, for the last decades in the Ertis macrosystem, especially in its Rudny Altai part, there was a glut of the industrial enterprise territory, particularly the productions of mineral and raw complex. The last ones emit more than a half of the harmful substances coming to the environment. The largest enterprises, known as the pollutants of the Altai environment, are localized in the following subgeosystems: the Actually-Shulbinsky, Ubinsky, Ulbinsky, Kyzylsu-Taitinsky, Bukhtyrminsky, and etc. On average, for each resident of the Rudny Altai region, there are over 250 kg emissions of harmful substances per year.

Environmental degradation, social and economic destabilization has led to the decrease in the living standard and unstable level of human development. Therefore, improvement of an ecological situation, creation of more favorable conditions for people’s life and work is considered to be the major and urgent action for the environmental protection. Here the population mortality in comparison with rural areas has almost doubled (670–1100 for 100,000 population).

In the conditions of Kazakhstani economy transition to sustainable development, the problem of ensuring the economic progress, not breaking the balance of natural geosystems, is particularly acute. In respect of strategic tasks, for the further development of the region, it is necessary to develop a long-term environmental policy. In its turn, for this purpose the creation of theoretical base, development of the methodological principles, their coordination with practice requirements and region conditions is demanded.

References

Alekseenko VA (1990) Geochemistry of the landscape and the environment. Science, Moscow, p 140
Armand DL (1975) Teoriya polya i problema vyideleniya geosistem (Theory of field and problem of geosystems allocation), Geography issues, pp 29–30
Aslanikashvili AF, Saushkin BG (1975) Novyie podhody k resheniyu metodologichesikh problem sovremennoy geograficheskoy nauki (New approaches to the methodological decision on problems of the modern geographical science). Geography in the Georgian SSR. Nauka, Tbilisi, pp 15–51
Bayandinova SM (2003a) K voprosu problem tehnogennogo zagryazneniya gornyih geosistem Yugo-Zapadnogo Altaya (To problems issue of technogenic pollution on mountain geosystems of the Southwest Altai), Al-farabi Kazakh National University, Almaty, pp 167–172
Bayandinova SM (2003c) Osobennosti geokologicheskoy obstanovki prirodnoy sredyi Vostochnogo Kazahstana (Features of geocological situation on environment of the East
References


Bayandinova SM (2003e) Faktoryi tehnogennogo zagryazneniya geosistem Vostochnogo Kazahstana (Factors of geosystems technogenic pollution of the East Kazakhstan). KSU named after E.A. Buketov, Karaganda pp 22–26


Demek Ya (1977) Teoriiya sistem i izucheniya landshafta (Systems theory and landscape study). Progress, Moscow, p 336


Fortescue D (1985) Geohimiya okruzhayuschey sredy (Environment geochemistry). MSU, Moscow, p 179


Geohimiya tyazhelyih metallov v prirodnyih i tehnogennyih landshaftah (Geochemistry of heavy metals in natural and technogenic landscapes) (1983) MSU, Moscow, p 117

Geohimiya prirodnyih i tehnogennyih landshaftov SSSR (Geochemistry of natural and technogenic landscapes of the USSR) (1988) Vysshaya Shkola, Moscow, p 419

Geosistemnyiy monitoring. Stroenie i funktsionirovanie geosistem (Geosystem monitoring. Structure and functioning of geosystems) (1986) GI of Academy of Sciences of the USSR, Moscow, p 355


Glazovskaya MA (1964) Geohimicheskie osnovyi tipologii i metodiki issledovaniy prirodnyih landshaftov (Geochemical fundamentals of typology and researches technique of natural landscapes). MSU, Moscow, p 611


Glazovskaya MA (1992) Biogeohimicheskaya organizovannost ekologicheskogo prostranstva v prirodnyih i antropogennih landshaftah kak kriteriy ih uстойчивости (Biogeochemical organization of ecological space in natural and anthropogenous landscapes as criterion of their stability). Notion of RAS № 5. Geography series, pp 5–12
Glazovskaya MA, Kasimov NS (1987) Landshaftno-geoimicheskie osnovyi fonovogo moni-
toringa prirodny sredyi (Landscape and geochemical bases of environment background
Grebenschikov OS, Tishkov AA (1986) Geograficheskie zakonomernosti strukturyi i funk-
tsionirovaniya ekosistem (Geographical regularities of ecosystems structure and functioning).
Nauka, Moscow, p 298
Isachenko AG (1972) Puti sinteticheskogo izobrazheniya prirodnyh kompleksov, izmenennyh
deyatelnosti cheloveka (Ways of synthetic image on natural complexes changed by human
activity) Synthesis problems in cartography. MSU, Moscow, pp 13–34
Isachenko AG (1974) O tak nazyvaemyh antropogennih landshaftah (About so-called
anthropogenous landscapes). Notion of RGS, pp 16–24
Isachenko AG (1981) Predstavlenie o geosisteme v sovremennoy fizicheskoj geografii (Idea of
geosystem in modern physical geography). Notion of RGS 4(113):25–33
Isachenko AG (1990) Intensivnost funktsionirovaniya i produktivnost geosistem (Functioning
Loganson NK (1970) Klassifikatsiya antropogennih landshaftov (Classification of anthropoge-
nos landscapes). Reporter of LSU № 24, pp 14–25
Jeffers J (1981) Vvedenie v sistemnyiy analiz: primenenie v ekologii (Introduction to systems
analysis: application in ecology). Mir, Moscow, p 213
Kalygin VP (2000) Promyishlennaya ekologiya (Industrial ecology). IIEPU, Moscow, 6–14 pp
Kasimov NS (1980) Geoimiyia landshaftov zon razlomov (Geochemistry of landscapes on break
zones). Vysshaya Shkola, Moscow, p 453
Kasimov NS (1990) Ekologo-geohimicheskaya otsenka gorodov (Ecological-geochemical
assessment of the cities). Reporter of MSU № 3, Geography series, pp 22–27
Kasimov NS Perelman AI (1993) Geohimicheskie printsipy ekologo-geohimicheskoy sistemi
gorodov (Geochemical principles of ecological-geochemical system of cities). Reporter of
MSU № 3. Geography series, pp 16–21
Krauklis AA (1979) Problemy eksperimentalnogo landshaftovedeniya (Problems of the experi-
mental landscape studying). Nauka, Novosibirsk, p 120
Krauklis AA (1989) Vzaimodeystvie protsessov i struktur v geosistemah. Geografiya i prirodnye
resursyi (Interaction of processes and structures in ecosystems. Geography and natural
resources). Magazine geography and natural resources. 4:28–32
Makunina AA (1980) Funktsionirovanie i dinamika landshaftov (Functioning and dynamics of
landscapes). Reporter of MSU № 5. Geography series, pp 2–14
Makunina TS (1983) K razvitiyu sovremenih predstavleniy o geosistemah (To development of
geosystem modern ideas). Reporter of MSU № 5. Geography series, pp 34–37
measures. World Health Organization. Geneva, p 245
Metodicheskie rekomendatsii po geohimicheskoj otsenke istochnikov zagryazneniya okruz-
hayuschey sredyi (Methodical recommendations about geochemical assessment of environ-
mental pollution sources) (1982) Vysshaya Shkola, Moscow, pp 74–82
Metodicheskie rekomendatsii po otsenke zagryazneniya territoriy gorodov himicheskimi elemen-
tami (Methodical recommendations about assessment of the chemical elements pollution in city
territories) (1982) Vysshaya Shkola, Moscow, pp 11–19
Mickiewicz BF, Sushik YuYa (1981) Osnova landshaftno-geohimicheskogo rayonirovaniya
(Basis of landscape and geochemical division). Kiev, p 238
Milkov FN (1967) Parageneticheskie landshaftnyie kompleksy (Paragenetic landscape com-
plexes). Scientific center of Voronezh department of GO USSR. Voronezh, pp 29–37
Milkov FN (1972) Voprosy tipologii i kartografirovaniya antropogennih landshaftov. Materialy
regionalny konferentsii «Antropogennye landshaftyi tsentralnyih chernozemnyih oblastey i
prilegayushchih territoriy» (Typology and mapping issues of anthropogenous landscapes.
Materials of the regional conference “Anthropogenous landscapes of the central black earth
regions and adjoining territories”). Voronezh, pp 74–83

References 95


Nekhoroshev VP (1934) Kratkiy geologicheskiy ocherk territorii Bolshogo Altaya (Short 1031 geological sketch of the Big Altai territory). Kazakhstan, Alma-ata, p 420

Nikolaev VA (1978) Klassifikatsiya i melkomashtabnoe kartografirovanie landshaftov (Classification and small-scale mapping of landscapes). MSU, Moscow, p 123


Perelman AI (1966) Geohimiya landshafhta (Landscape geochemistry). Vysshaya Shkola, Moscow, p 148

Perelman AI (1968) Geohimiya epigeneticheskikh protsessov (Geochemistry of epigenetic processes (hyper genesis zone)). Subsoil, Moscow, pp 18–36, 43–54


Reteyum AY (1975) Fiziko-geograficheskoe rayonirovanie i vyidelenie geosystem.
Kolichestvennyie metody izucheniya prirodnykh geosistem (Quantitative methods of nature studying). Mysl’, Moscow, pp 5–27

Sochava VB (1978) Vvedenie v uchenie o geosistemah (Introduction to the geosystems doctrine). Nauka, Novosibirsk, p 318


The program of development of the East Kazakhstan Region territory on 2016–2020
Man-Made Ecology of East Kazakhstan
Bayandinova, S.; Mamutov, Z.; Issanova, G.
2018, XV, 144 p. 15 illus. in color., Hardcover