Contents

Part I An Introduction to Nonstandard Analysis

1 Simple Nonstandard Analysis and Applications
Peter A. Loeb
1.1 Introduction
1.2 A Simple Construction of a Nonstandard Number System
1.3 A Simple Language
1.4 Interpretation of the Language L
1.5 Transfer Principle for $^*\mathbb{R}$
1.6 The Nonstandard Real Numbers
1.7 Sequences
1.8 Topology on the Reals
1.9 Limits and Continuity
1.10 Differentiation
1.11 Riemann Integration
References

2 An Introduction to General Nonstandard Analysis
Peter A. Loeb
2.1 Superstructures
2.2 Language for Superstructures
2.3 Interpretation of the Language for Superstructures
2.4 Monomorphisms and the Transfer Principle
2.5 Ultrapower Construction of Superstructures and Monomorphisms
2.6 Special Index Sets Yielding Enlargements
2.7 A Result in Infinite Graph Theory
2.8 Internal and External Sets
2.9 Saturation
References
3 Topology and Measure Theory .. 79
 Peter A. Loeb
 3.1 Metric and Topological Spaces 79
 3.2 Continuous Mappings ... 83
 3.3 Convergence .. 83
 3.4 More on Topologies .. 84
 3.5 Compact Spaces .. 85
 3.6 Product Spaces .. 88
 3.7 Relative Topologies ... 88
 3.8 Uniform Continuity and Uniform Spaces 89
 3.9 Nonstandard Hulls ... 92
 3.10 Compactifications ... 93
 3.11 The Base and Antibase Operators 93
 3.12 Measure and Probability Theory 97
 3.12.1 The Martingale Convergence Theorem 99
 3.12.2 Representing Measures in Potential Theory 101
 References .. 103

Part II Functional Analysis

4 Banach Spaces and Linear Operators 107
 Manfred P.H. Wolff
 4.1 Introduction .. 107
 4.2 Basic Nonstandard Analysis of Normed Spaces 108
 4.2.1 Internal Normed Spaces and Their Nonstandard Hull 108
 4.2.2 Standard Continuous and Internal S–continuous Linear Operators 114
 4.2.3 Special Banach Spaces and Their Nonstandard Hulls 116
 4.2.4 Notes .. 119
 4.3 Advanced Theory of Banach Spaces 119
 4.3.1 A Brief Excursion to Locally Convex Vector Spaces 119
 4.3.2 General Banach Spaces 124
 4.3.3 Banach Lattices .. 130
 4.3.4 Notes .. 133
 4.4 Elementary Theory of Linear Operators 133
 4.4.1 Compact Operators .. 133
 4.4.2 Fredholm Operators 135
 4.4.3 Notes .. 137
 4.5 Spectral Theory of Operators 137
 4.5.1 Basic Definitions and Facts 137
6.3.2 μ_L-integrability and S_{μ}-integrability 200
6.3.3 Integrable Functions defined on $\mathbb{N}^n \times \Lambda \times \lbrack 0, \infty \rbrack^m$ 205
6.3.4 Standard Part of the Conditional Expectation 210
6.3.5 Characterization of S-integrability 211
6.3.6 Keisler’s Fubini Theorem 213
6.3.7 Hyperfinite Representation of the Tensor Product 217
6.3.8 On Symmetric Functions 220

6.4 Internal and Standard Martingales 222
 6.4.1 Stopping Times and Doob’s Upcrossing Result 223
 6.4.2 The Maximum Inequality 224
 6.4.3 Doob’s Inequality ... 224
 6.4.4 The Burkholder Davis Gundy Inequalities 225
 6.4.5 S-integrability of Internal Martingales 225
 6.4.6 S-continuity of Internal Martingales 226
 6.4.7 The Standard Part of Internal Martingales 226

References ... 230

7 Stochastic Analysis ... 233
 Horst Osswald
 7.1 Introduction ... 233
 7.2 The Itô Integral for the Brownian Motion 237
 7.2.1 The S-Continuity of the Internal Integral 238
 7.2.2 The S-Square-Integrability of the Internal
 Itô Integral .. 243
 7.2.3 Adaptedness and Predictability 245
 7.2.4 The Standard Itô Integral 247
 7.2.5 Integrability of the Itô Integral 248
 7.2.6 The Wiener Measure .. 250
 7.3 The Iterated Integral .. 252
 7.3.1 The Definition of the Iterated Integral 252
 7.3.2 On Products of Iterated Integrals 256
 7.3.3 The Continuity of the Standard Iterated
 Integral Process ... 259
 7.3.4 The $W_{C_{\text{loc}}}$-Measurability of the Iterated Itô Integral ... 260
 7.3.5 $I_n^M(f)$ is a Continuous Version of the Standard
 Part of $I_n^M(F)$.. 262
 7.3.6 Continuous Versions of Iterated Integral Processes 263
 7.4 Beginning of Malliavin Calculus 264
 7.4.1 Chaos Decomposition 265
 7.4.2 A Lifting Theorem for Functionals in $L_{W}(\Gamma_L)$ 270
 7.4.3 Computation of the Kernels 271
 7.4.4 The Kernels of the Product of Wiener Functionals 273
 7.4.5 The Malliavin Derivative 276
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.6</td>
<td>A Commutation Rule for Derivative and Limit</td>
<td>277</td>
</tr>
<tr>
<td>7.4.7</td>
<td>The Clark-Ocone Formula</td>
<td>278</td>
</tr>
<tr>
<td>7.4.8</td>
<td>A Lifting Theorem for the Derivative</td>
<td>280</td>
</tr>
<tr>
<td>7.4.9</td>
<td>The Skorokhod Integral</td>
<td>281</td>
</tr>
<tr>
<td>7.4.10</td>
<td>Product and Chain Rules for the Malliavin Derivative</td>
<td>284</td>
</tr>
<tr>
<td>7.5</td>
<td>Stochastic Integration for Symmetric Poisson Processes</td>
<td>288</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Orthogonal Increments</td>
<td>288</td>
</tr>
<tr>
<td>7.5.2</td>
<td>From Internal Random Walks to the Standard Poisson Integral</td>
<td>290</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Iterated Integrals</td>
<td>293</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Multiple Integrals</td>
<td>297</td>
</tr>
<tr>
<td>7.5.5</td>
<td>The σ-Algebra \mathcal{D} generated by the Wiener-Lévy Integrals</td>
<td>298</td>
</tr>
<tr>
<td>7.6</td>
<td>Malliavin Calculus for Poisson Processes</td>
<td>302</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Chaos</td>
<td>302</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Malliavin Derivative</td>
<td>305</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Exchange of Derivative and Limit</td>
<td>306</td>
</tr>
<tr>
<td>7.6.4</td>
<td>The Clark-Ocone Formula</td>
<td>307</td>
</tr>
<tr>
<td>7.6.5</td>
<td>The Skorokhod Integral</td>
<td>309</td>
</tr>
<tr>
<td>7.6.6</td>
<td>Smooth Representations</td>
<td>310</td>
</tr>
<tr>
<td>7.6.7</td>
<td>The Product Rule</td>
<td>311</td>
</tr>
<tr>
<td>7.6.8</td>
<td>The Chain Rule</td>
<td>315</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>317</td>
</tr>
</tbody>
</table>

8 New Understanding of Stochastic Independence 321
Yeneng Sun

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>The General Context</td>
<td>321</td>
</tr>
<tr>
<td>8.2</td>
<td>The Specific Problems</td>
<td>322</td>
</tr>
<tr>
<td>8.3</td>
<td>Difficulties in the Classical Framework</td>
<td>324</td>
</tr>
<tr>
<td>8.4</td>
<td>The Resolution</td>
<td>326</td>
</tr>
<tr>
<td>8.5</td>
<td>Exact Law of Large Numbers</td>
<td>327</td>
</tr>
<tr>
<td>8.6</td>
<td>Converse Law of Large Numbers</td>
<td>330</td>
</tr>
<tr>
<td>8.7</td>
<td>Almost Equivalence of Pairwise and Mutual Independence</td>
<td>332</td>
</tr>
<tr>
<td>8.8</td>
<td>Duality of Independence and Exchangeability</td>
<td>336</td>
</tr>
<tr>
<td>8.9</td>
<td>Grand Unification of Multiplicative Properties</td>
<td>338</td>
</tr>
<tr>
<td>8.10</td>
<td>Discrete Interpretations</td>
<td>340</td>
</tr>
<tr>
<td>8.11</td>
<td>Notes</td>
<td>343</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>344</td>
</tr>
</tbody>
</table>
Part V Economics and Nonstandard Analysis

9 Nonstandard Analysis in Mathematical Economics 349
 Yeneng Sun
 9.1 Introduction 349
 9.2 Distribution and Integration of Correspondences 356
 9.2.1 Distribution of Correspondences 356
 9.2.2 Integration of Correspondences 361
 9.3 Nash Equilibria in Games with Many Players 363
 9.3.1 General Existence of Nash Equilibria in the Loeb Setting 364
 9.3.2 Nonexistence of Nash Equilibria in the Lebesgue Setting 365
 9.4 Nash Equilibria in Finite Games with Incomplete Information 368
 9.4.1 Nonexistence of Nash Equilibria for Games with Information 368
 9.4.2 Approximate Nash Equilibria for Large Finite Games and Idealizations 370
 9.4.3 General Existence of Nash Equilibria for Games with Information 373
 9.5 Exact Law of Large Numbers and Independent Set-Valued Processes 375
 9.6 Competitive Equilibria in Random Economies 380
 9.7 General Risk Analysis and Asset Pricing 383
 9.7.1 General Risk Analysis for Large Markets 383
 9.7.2 The Equivalence of Exact No Arbitrage and APT Pricing 388
 9.8 Independent Universal Random Matching 389
 9.9 Notes 392
References 396

Part VI Combinatorial Number Theory

10 Density Problems and Freiman’s Inverse Problems 403
 Renling Jin
 10.1 Introduction 403
 10.2 Applications to Density Problems 405
 10.2.1 Sumset Phenomenon 407
 10.2.2 Plünnecke Type of Inequalities for Densities 411
 10.3 Applications to Freiman’s Inverse Problems 417
 10.3.1 Freiman’s Inverse Problem for Cuts 419
 10.3.2 Freiman’s $3|A| - 3 + b$ Conjecture 432
Nonstandard Analysis for the Working Mathematician
Loeb, P.; Wolff, M.P.H. (Eds.)
2015, XV, 481 p., Hardcover
ISBN: 978-94-017-7326-3