Contents

Part I Nano-imaging by Transmission Electron Microscopy

1 Seeing Nanometer-Sized World .. 3
 1.1 What is the Nanoworld? How Much is Its Size? 3
 1.2 Necessity of Study for Nanoscience and Nanoimaging 6
 1.3 Basic Modes for Imaging ... 8
 1.4 Why are Electrons Necessary for Nanoimaging? 10
 1.5 Three Methods for Seeing Isolated Single Atoms 12
 1.6 Summary .. 15
 Problems .. 15
 References .. 15

2 Structure and Imaging of a Transmission Electron Microscope (TEM) ... 17
 2.1 Structure of a Transmission Electron Microscope 17
 2.2 Basic Action of a Magnetic Round Lens 22
 2.3 Mathematics for Describing Lens Actions 24
 2.4 Summary .. 27
 Problems .. 27
 References .. 28

3 Basic Theories of TEM Imaging ... 29
 3.1 How to Describe a Wave in Three-Dimensional Space? 29
 3.2 Why Does an Electron Microscope Visualize an Objects in Analogy with a Light Microscope? 33
 3.3 Why Can a Single Atom be Observed by an Electron Microscope? .. 35
 3.4 Images and Diffraction Patterns 38
 3.5 Summary .. 41
 Problems .. 42
 References .. 42
4 Resolution and Image Contrast of a Transmission Electron Microscope (TEM)

4.1 Simple Estimation of Point-to-Point Resolution of a TEM

4.2 Limitation by Chromatic Aberration of an Objective Lens

4.3 Effects of Other Aberrations on Image Resolution in TEM

4.4 Image Contrast of a Transmission Electron Microscope

4.5 Bright-Field Images

4.6 Dark-Field Images

4.7 Summary

Problems

References

5 What is High-Resolution Transmission Electron Microscopy?

5.1 How Can We Observe a Single Atom by TEM? – Magic of Phase Contrast

5.2 A Second-Order Theory for Single-Atom Imaging

5.3 Phase Contrast of Atomic Clusters

5.4 Imaging of Amorphous Films and Thon’s Experiment

5.5 Diffraction Contrast of Microcrystallites

5.6 Where Does an Objective Lens Focus in Thin Specimens?

5.7 Key Concepts of High-Resolution Imaging

5.8 Summary

Problems

References

6 Lattice Images and Structure Images

6.1 Interference of Two Waves in Three-Dimension

6.2 Lattice Images by Two-Wave Interference from a Crystal

6.3 Three-Wave Interference and Fourier Images

6.4 MultiWave Lattice Images

6.5 What is a Structure Image of Thicker Crystals

6.6 Other Lattice Images

6.7 Summary

Problems

References

7 Imaging Theory of High-Resolution TEM and Image Simulation

7.1 Linear Imaging Theory of TEM for Single-Crystal Specimens

7.1.1 Description of Phase Modulation by a Thin Specimen

7.1.2 Exit Wave Field for a Thicker Crystal

7.1.3 Lens Transfer Function

References
7.1.4 Phase Contrast Caused by Aberrations of an Objective Lens 90
7.1.5 Contrast Transfer Function Described in Reciprocal Space 91
7.1.6 Effects of a Slight Convergence of Incident Electron Waves and Fluctuation of Accelerating Voltage .. 93
7.1.7 Imaging Theory of Weak-Amplitude Objects .. 94
7.1.8 Effects of Inelastic Scattering on HRTEM Images ... 96
7.2 Image Simulation of High-Resolution TEM Images .. 97
7.2.1 Necessity of the Simulation ... 97
7.2.2 Principle and Method of Simulation ... 98
7.2.3 What is the Supercell Method in Image Simulation .. 100
7.3 Coherence Problems in TEM Imaging .. 102
7.3.1 Imaging Theory of TEM and the Related Coherence of Incident Waves 102
7.3.2 Contrast of Interference Fringes and the Definition of Coherence 104
7.3.3 Temporal Coherence and Spatial Coherence of Waves 105
7.4 Summary ... 109
Problems .. 109
References .. 109

8 Advanced Transmission Electron Microscopy ... 111
8.1 Energy-Filtered Transmission Electron Microscopy (EFTEM) 111
8.1.1 Basic Theory of Electron Energy Loss Spectroscopy (EELS) 111
8.1.2 EELS in Image and Diffraction Modes ... 113
8.1.3 Practical Energy-Filtered TEM Instruments ... 115
8.1.4 What is Elemental Mapping Image? .. 116
8.1.5 Spatial Resolution of Energy-Filtered TEM Images 117
8.2 Electron Holography .. 118
8.2.1 What is Holography? ... 118
8.2.2 Instruments for Electron Holography ... 120
8.2.3 What Can We Do Using Electron Holography? .. 122
8.3 Electron Tomography – 3D Visualization of Nanoworld – 126
8.3.1 Principle of 3D Tomography .. 126
8.3.2 Application of the Principle to TEM .. 129
Part II Nano-imaging by Scanning Transmission Electron Microscopy

9 What is Scanning Transmission Electron Microscopy (STEM)?
 9.1 Characteristics of STEM
 9.1.1 Comparison between TEM, SEM, and STEM
 9.1.2 Application Possibilities of STEM
 9.2 Basics for nm-Sized Electron Probe
 (Geometrical Optical Approach)
 9.3 Principle of Image Formation in STEM
 9.4 Actual Instrument of STEM
 9.5 Summary

Problems
References

10 Imaging of Scanning Transmission Electron Microscopy (STEM)
 10.1 Reciprocal Theorem between STEM and TEM
 10.2 Imaging Modes in STEM
 10.3 Summary

Problems
References

11 Image Contrast and Its Formation Mechanism in STEM
 11.1 Bright-Field Image Contrast and Lattice Images with Phase Contrast
 11.2 Crewe’s Z-Contrast of a Single Atom
 11.3 Pennycook’s Z^{2-x}-Contrast in Annular Dark-Field (ADF) STEM

Problems
References
11.4 Depth-Sectioning for ADF-STEM Images 175
11.5 Annular Bright-Field (ABF) STEM – Revival of Bright-Field Imaging in STEM –.................. 177
11.6 Elemental Mapping Imaging by EELS and EDX in STEM 178
11.7 Secondary Electron Imaging in STEM 182
11.8 Scanning Confocal Electron Microscopy (SCEM) 182
11.9 High-Voltage STEM 183
11.10 Electron Tomography by STEM 184
 11.10.1 Image Contrast of Amorphous Specimens 185
 11.10.2 STEM Tomography of Crystalline Specimens 186
 11.10.3 3D Images Using EELS Signals and EDX Ones ... 186
 11.10.4 Topography Versus Tomography for 3D Representation 187
11.11 Nanodiffraction in STEM 187
11.12 Summary .. 189
Problems .. 189
References ... 189

12 Imaging Theory for STEM .. 191
 12.1 Basic Concept of Imaging Theory for STEM 191
 12.2 Cowley–Moodie’s Multislice Method 192
 12.3 Bethe’s Bloch Wave Method 199
 12.4 Summary .. 201
Problems .. 202
References ... 202

13 Future Prospects and Possibility of TEM and STEM 203
 13.1 Image Resolution 203
 13.2 Effects of Chromatic Aberration 204
 13.3 Development of Electron Energy Loss Spectroscopy (EELS) 205
 13.4 Simulation for Quantitative Estimation for TEM and STEM Images 205
 13.5 Development of Elemental Analysis Using EDX 205
 13.6 Other Signal Detection for STEM Imaging 206
 13.7 Electron Tomography in TEM and STEM 206
 13.7.1 Ordinary Electron Tomography 206
 13.7.2 HRTEM Method for the Extraction of 3D Information of Small Particles 207
 13.7.3 Depth-Sections Method in ADF-STEM 207
 13.7.4 Confocal Imaging Mode in STEM 208
 13.8 Toward Lower Voltage TEM and STEM 208
 13.9 In Situ Observation and High-Resolution Observation in Gas and Liquid Atmospheres 209
Electron Nano-Imaging
Basics of Imaging and Diffraction for TEM and STEM
Tanaka, N.
2017, XXVIII, 333 p. 129 illus., 22 illus. in color., Hardcover
ISBN: 978-4-431-56500-0