CONTENTS

Preface ... xii
Bertfried Fauser, Jürgen Tolksdorf and Eberhard Zeidler

Constructive Use of Holographic Projections ... 1
Bert Schroer
 1. Historical background and present motivations for holography 1
 2. Lightfront holography, holography on null-surfaces and the origin of the area law 4
 3. From holography to correspondence: the AdS/CFT correspondence and a controversy 14
 4. Concluding remarks 22
 Acknowledgements 23
 References 23

Topos Theory and ‘Neo-Realist’ Quantum Theory ... 25
Andreas Döring
 1. Introduction 25
 1.1. What is a topos? 26
 1.2. Topos theory and physics 29
 2. A formal language for physics 31
 3. The context category $\mathcal{V}(\mathcal{R})$ and the topos of presheaves $\text{Set}^{\mathcal{V}(\mathcal{R})^{\text{op}}}$ 33
 4. Representing $\mathcal{L}(S)$ in the presheaf topos $\text{Set}^{\mathcal{V}(\mathcal{R})^{\text{op}}}$ 35
 5. Truth objects and truth-values 38
 5.1. Generalised elements as generalised states 38
 5.2. The construction of truth objects 39
 5.3. Truth objects and Birkhoff-von Neumann quantum logic 41
 5.4. The assignment of truth-values to propositions 42
 6. Conclusion and outlook 45
 Acknowledgements 46
 References 46

A Survey on Mathematical Feynman Path Integrals:
Construction, Asymptotics, Applications ... 49
Sergio Albeverio and Sonia Mazzucchi
 1. Introduction 49
 2. The mathematical realization of Feynman path integrals 52
 3. Applications 56
 3.1. Quantum mechanics 56
 3.2. Quantum fields 60
 Acknowledgements 62
References

A Comment on the Infra-Red Problem in the AdS/CFT Correspondence

Hanno Gottschalk and Horst Thaler

1. Introduction
2. Functional integrals on AdS
3. Two generating functionals
4. The infra-red problem and triviality
5. Conclusions and outlook
Acknowledgement
References

Some Steps Towards Noncommutative Mirror Symmetry on the Torus

Karl-Georg Schlesinger

1. Introduction
2. Elliptic curves
3. Noncommutative elliptic curves
4. Exotic deformations of the Fukaya category
5. Conclusion and outlook
Acknowledgements
References

Witten’s Volume Formula, Cohomological Pairings of Moduli Spaces of Flat Connections and Applications of Multiple Zeta Functions

Partha Guha

1. Introduction
2. Background about moduli space
3. Volume of the moduli space of $SU(2)$ flat connections
3.1. Asymptotic analysis and computation of volume of moduli spaces
4. Volume of the moduli space of flat $SU(3)$ connections
5. Cohomological pairings of the moduli space
5.1. Review of Donaldson-Thaddeus-Witten’s work on $SU(2)$ moduli space
5.2. Cohomological pairings for $SU(3)$ connections
5.2.1. Flag manifolds and cohomology
5.2.2. Computation of the intersection pairings
5.3. Concrete examples
References

Noncommutative Field Theories from a Deformation Point of View

Stefan Waldmann

1. Introduction
2. Noncommutative space-times
3. Matter fields and deformed vector bundles
4. Deformed principal bundles
5. The commutant and associated bundles
<table>
<thead>
<tr>
<th>References</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Quantum Action Principle in the Framework of Causal Perturbation Theory</td>
<td></td>
</tr>
<tr>
<td>Ferdinand Brennecke and Michael Dütsch</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>177</td>
</tr>
<tr>
<td>2. The off-shell Master Ward Identity in classical field theory</td>
<td>179</td>
</tr>
<tr>
<td>3. Causal perturbation theory</td>
<td>182</td>
</tr>
<tr>
<td>4. Proper vertices</td>
<td>184</td>
</tr>
<tr>
<td>5. The Quantum Action Principle</td>
<td>186</td>
</tr>
<tr>
<td>5.1. Formulation of the Master Ward Identity in terms of proper vertices</td>
<td>186</td>
</tr>
<tr>
<td>5.2. The anomalous Master Ward Identity - Quantum Action Principle</td>
<td>188</td>
</tr>
<tr>
<td>6. Algebraic renormalization</td>
<td>194</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>195</td>
</tr>
<tr>
<td>References</td>
<td>195</td>
</tr>
<tr>
<td>Plane Wave Geometry and Quantum Physics</td>
<td>197</td>
</tr>
<tr>
<td>Matthias Blau</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>197</td>
</tr>
<tr>
<td>2. A brief introduction to the geometry of plane wave metrics</td>
<td>198</td>
</tr>
<tr>
<td>2.1. Plane waves in Rosen and Brinkmann coordinates: heuristics</td>
<td>198</td>
</tr>
<tr>
<td>2.2. Curvature of plane waves</td>
<td>200</td>
</tr>
<tr>
<td>2.3. Geodesics, lightcone gauge and harmonic oscillators</td>
<td>200</td>
</tr>
<tr>
<td>2.4. From Rosen to Brinkmann coordinates (and back)</td>
<td>202</td>
</tr>
<tr>
<td>2.5. The Heisenberg isometry algebra of a generic plane wave</td>
<td>203</td>
</tr>
<tr>
<td>2.6. Geodesics, isometries, and conserved charges</td>
<td>205</td>
</tr>
<tr>
<td>2.7. Synopsis</td>
<td>207</td>
</tr>
<tr>
<td>3. The Lewis–Riesenfeld theory of the time-dependent quantum oscillator</td>
<td>207</td>
</tr>
<tr>
<td>3.1. Description of the problem</td>
<td>207</td>
</tr>
<tr>
<td>3.2. Outline of the Lewis–Riesenfeld procedure</td>
<td>208</td>
</tr>
<tr>
<td>3.3. Deducing the procedure from the plane wave geometry</td>
<td>210</td>
</tr>
<tr>
<td>4. A curious equivalence between two classes of Yang-Mills actions</td>
<td>211</td>
</tr>
<tr>
<td>4.1. Description of the problem</td>
<td>211</td>
</tr>
<tr>
<td>4.2. A classical mechanics toy model</td>
<td>212</td>
</tr>
<tr>
<td>4.3. The explanation: from plane wave metrics to Yang-Mills actions</td>
<td>214</td>
</tr>
<tr>
<td>References</td>
<td>215</td>
</tr>
<tr>
<td>Canonical Quantum Gravity and Effective Theory</td>
<td>217</td>
</tr>
<tr>
<td>Martin Bojowald</td>
<td></td>
</tr>
<tr>
<td>1. Loop quantum gravity</td>
<td>217</td>
</tr>
<tr>
<td>2. Effective equations</td>
<td>220</td>
</tr>
<tr>
<td>2.1. Quantum back-reaction</td>
<td>221</td>
</tr>
<tr>
<td>2.2. General procedure</td>
<td>222</td>
</tr>
<tr>
<td>3. A solvable model for cosmology</td>
<td>225</td>
</tr>
<tr>
<td>3.1. Interactions</td>
<td>229</td>
</tr>
</tbody>
</table>
From Discrete Space-Time to Minkowski Space:
Basic Mechanisms, Methods, and Perspectives 235

Felix Finster
1. Introduction 235
2. Fermion systems in discrete space-time 236
3. A variational principle 238
4. A mechanism of spontaneous symmetry breaking 240
5. Emergence of a discrete causal structure 243
6. A first connection to Minkowski space 245
7. A static and isotropic lattice model 249
8. Analysis of regularization tails 252
9. A variational principle for the masses of the Dirac seas 254
10. The continuum limit 256
11. Outlook and open problems 257
References 258

Towards a \(q \)-Deformed Quantum Field Theory 261

Hartmut Wachter
1. Introduction 261
2. \(q \)-Regularization 262
3. Basic ideas of the mathematical formalism 265
3.1. What are quantum groups and quantum spaces? 265
3.2. How do we multiply on quantum spaces? 267
3.3. What are \(q \)-deformed translations? 268
3.4. How to differentiate and integrate on quantum spaces 270
3.5. Fourier transformations on quantum spaces 271
4. Applications to physics 274
4.1. Plane-wave solutions to the free-particle Schrödinger equation 275
4.2. The propagator of the free \(q \)-deformed particle 277
4.3. Scattering of \(q \)-deformed particles 279
5. Conclusion 281
Acknowledgement 281
References 281

Towards a \(q \)-Deformed Supersymmetric Field Theory 285

Alexander Schmidt
1. Introduction 285
2. Fundamental Algebraic Concepts 287
3. \(q \)-Deformed Superalgebras 290
4. \(q \)-Deformed Superspaces and Operator Representations 293
Appendix A. \(q \)-Analogs of Pauli matrices and spin matrices 298