Contents

Preface vii

1 Introduction 1

2 N-Dimensional Commutative Hypercomplex Numbers 5
 2.1 N-Dimensional Hypercomplex Numbers 5
 2.1.1 Equality and Sum 5
 2.1.2 The Product Operation 6
 2.1.3 Characteristic Matrix and Characteristic Determinant 7
 2.1.4 Invariant Quantities for Hypercomplex Numbers 9
 2.1.5 The Division Operation 10
 2.1.6 Characteristic Equation and Principal Conjugations 10
 2.1.7 Decomposable Systems 12
 2.2 The General Two-Dimensional System 12
 2.2.1 Canonical Two-Dimensional Systems 16
 2.2.2 The Two-Dimensional Hyperbolic System 16

3 The Geometries Generated by Hypercomplex Numbers 19
 3.1 Linear Transformations and Geometries 19
 3.1.1 The Continuous Lie Groups 19
 3.1.2 Klein’s Erlanger Programm 19
 3.2 Groups Associated with Hypercomplex Numbers 20
 3.2.1 Geometries Generated by Complex and Hyperbolic Numbers 23
 3.3 Conclusions 24

4 Trigonometry in the Minkowski Plane 27
 4.1 Geometrical Representation of Hyperbolic Numbers 28
 4.1.1 Hyperbolic Exponential Function and Hyperbolic Polar Transformation 28
 4.1.2 Hyperbolic Rotations as Lorentz Transformations of Special Relativity 30
 4.2 Basics of Hyperbolic Trigonometry 31
 4.2.1 Complex Numbers and Euclidean Trigonometry 31
 4.2.2 Hyperbolic Rotation Invariants in Pseudo-Euclidean Plane Geometry 32
 4.2.3 Fjelstad’s Extension of Hyperbolic Trigonometric Functions 35
 4.3 Geometry in the Pseudo-Euclidean Cartesian Plane 37
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4 Goniometry and Trigonometry in the Pseudo-Euclidean Plane</td>
</tr>
<tr>
<td>4.4.1 Analytical Definitions of Hyperbolic Trigonometric Functions</td>
</tr>
<tr>
<td>4.4.2 Trigonometric Laws in the Pseudo-Euclidean Plane</td>
</tr>
<tr>
<td>4.4.3 The Triangle’s Angles Sum</td>
</tr>
<tr>
<td>4.5 Theorems on Equilateral Hyperbolas in the Pseudo-Euclidean Plane</td>
</tr>
<tr>
<td>4.6 Examples of Triangle Solutions in the Minkowski Plane</td>
</tr>
<tr>
<td>5 Uniform and Accelerated Motions in the Minkowski Space-Time (Twin Paradox)</td>
</tr>
<tr>
<td>5.1 Inertial Motions</td>
</tr>
<tr>
<td>5.2 Inertial and Uniformly Accelerated Motions</td>
</tr>
<tr>
<td>5.3 Non-uniformly Accelerated Motions</td>
</tr>
<tr>
<td>5.3.1 Frenet’s Formulas in the Minkowski Space-Time</td>
</tr>
<tr>
<td>5.3.2 Proper Time in Non-Uniformly Accelerated Motions</td>
</tr>
<tr>
<td>6 General Two-Dimensional Hypercomplex Numbers</td>
</tr>
<tr>
<td>6.1 Geometrical Representation</td>
</tr>
<tr>
<td>6.2 Geometry and Trigonometry in Two-Dimensional Algebras</td>
</tr>
<tr>
<td>6.2.1 The “Circle” for Three Points</td>
</tr>
<tr>
<td>6.2.2 Hero’s Formula and Pythagoras’ Theorem</td>
</tr>
<tr>
<td>6.2.3 Properties of “Orthogonal” Lines in General Algebras</td>
</tr>
<tr>
<td>6.3 Some Properties of Fundamental Conic Sections</td>
</tr>
<tr>
<td>6.3.1 “Incircles” and “Excircles” of a Triangle</td>
</tr>
<tr>
<td>6.3.2 The Tangent Lines to the Fundamental Conic Section</td>
</tr>
<tr>
<td>6.4 Numerical Examples</td>
</tr>
<tr>
<td>7 Functions of a Hyperbolic Variable</td>
</tr>
<tr>
<td>7.1 Some Remarks on Functions of a Complex Variable</td>
</tr>
<tr>
<td>7.2 Functions of Hypercomplex Variables</td>
</tr>
<tr>
<td>7.2.1 Generalized Cauchy–Riemann Conditions</td>
</tr>
<tr>
<td>7.2.2 The Principal Transformation</td>
</tr>
<tr>
<td>7.2.3 Functions of a Hypercomplex Variable as Infinite-Dimensional Lie Groups</td>
</tr>
<tr>
<td>7.3 The Functions of a Hyperbolic Variable</td>
</tr>
<tr>
<td>7.3.1 Cauchy–Riemann Conditions for General Two-Dimensional Systems</td>
</tr>
<tr>
<td>7.3.2 The Derivative of Functions of a Canonical Hyperbolic Variable</td>
</tr>
<tr>
<td>7.3.3 The Properties of H-Analytic Functions</td>
</tr>
<tr>
<td>7.3.4 The Analytic Functions of Decomposable Systems</td>
</tr>
<tr>
<td>7.4 The Elementary Functions of a Canonical Hyperbolic Variable</td>
</tr>
</tbody>
</table>
Contents

7.5 H-Conformal Mappings .. 97
 7.5.1 H-Conformal Mappings by Means of Elementary Functions 99
 7.5.2 Hyperbolic Linear-Fractional Mapping 109
7.6 Commutative Hypercomplex Systems with Three Unities 114
 7.6.1 Some Properties of the Three-Units Separable Systems ... 115

8 Hyperbolic Variables on Lorentz Surfaces 119
 8.1 Introduction ... 119
 8.2 Gauss: Conformal Mapping of Surfaces 121
 8.2.1 Mapping of a Spherical Surface on a Plane 123
 8.2.2 Conclusions ... 124
 8.3 Extension of Gauss Theorem: Conformal Mapping of Lorentz Surfaces ... 125
 8.4 Beltrami: Complex Variables on a Surface 126
 8.4.1 Beltrami’s Equation 127
 8.5 Beltrami’s Integration of Geodesic Equations 130
 8.5.1 Differential Parameter and Geodesic Equations 130
 8.6 Extension of Beltrami’s Equation to Non-Definite Differential Forms ... 133

9 Constant Curvature Lorentz Surfaces 137
 9.1 Introduction ... 137
 9.2 Constant Curvature Riemann Surfaces 140
 9.2.1 Rotation Surfaces 140
 9.2.2 Positive Constant Curvature Surface 143
 9.2.3 Negative Constant Curvature Surface 148
 9.2.4 Motions .. 149
 9.2.5 Two-Sheets Hyperboloid in a Semi-Riemannian Space ... 151
 9.3 Constant Curvature Lorentz Surfaces 153
 9.3.1 Line Element .. 153
 9.3.2 Isometric Forms of the Line Elements 153
 9.3.3 Equations of the Geodesics 154
 9.3.4 Motions .. 156
 9.4 Geodesics and Geodesic Distances on Riemann and Lorentz Surfaces ... 157
 9.4.1 The Equation of the Geodesic 157
 9.4.2 Geodesic Distance 159

10 Generalization of Two-Dimensional Special Relativity
 (Hyperbolic Transformations and the Equivalence Principle) 161
 10.1 The Physical Meaning of Transformations by Hyperbolic Functions ... 161
Contents

C.1.3 Division Between Hypercomplex Numbers 218
C.2 Two-dimensional Hypercomplex Numbers 221
C.3 Properties of the Characteristic Matrix \mathcal{M} 222
 C.3.1 Algebraic Properties 223
 C.3.2 Spectral Properties 223
 C.3.3 More About Divisors of Zero 227
 C.3.4 Modulus of a Hypercomplex Number 227
 C.3.5 Conjugations of a Hypercomplex Number 227
C.4 Functions of a Hypercomplex Variable 228
 C.4.1 Analytic Continuation 228
 C.4.2 Properties of Hypercomplex Functions 229
C.5 Functions of a Two-dimensional Hypercomplex Variable 230
 C.5.1 Function of 2×2 Matrices 231
 C.5.2 The Derivative of the Functions of a Real Variable 233
C.6 Derivatives of a Hypercomplex Function 236
 C.6.1 Derivative with Respect to a Hypercomplex Variable 236
 C.6.2 Partial Derivatives 237
 C.6.3 Components of the Derivative Operator 238
 C.6.4 Derivative with Respect to the Conjugated Variables 239
C.7 Characteristic Differential Equation 239
 C.7.1 Characteristic Equation for Two-dimensional Numbers 241
C.8 Equivalence Between the Formalizations of Hypercomplex Numbers 242

Bibliography 245

Index 251
The Mathematics of Minkowski Space–Time
With an Introduction to Commutative Hypercomplex Numbers
Catoni, F.; Boccaletti, D.; Cannata, R.; Catoni, V.; Michelatti, E.; Zampetti, P.
2008, XIX, 256 p., Softcover
ISBN: 978-3-7643-8613-9
A product of Birkhäuser Basel