Contents

Part I Physico-Chemical Properties of Reservoir Fluids

1 Chemical Composition and Properties of Reservoir Fluids 3
 1.1 Chemical Properties of Crude Oil 3
 1.1.1 The Elemental Composition of Oil 3
 1.1.2 The Hydrocarbon Compounds in Crude Oil 5
 1.1.3 The Non-hydrocarbon Compounds in Crude Oil 6
 1.1.4 Molecular Weight, Wax Content, and Colloid and Asphaltene Content in Crude Oil 7
 1.2 Physical Properties and Classification of Crude Oil 8
 1.2.1 Physical Properties of Crude Oil 8
 1.2.2 Classification of Tank-Oil 13
 1.2.3 The Classification of Reservoir Oil 17
 1.3 Chemical Composition of Natural Gas 18
 1.4 Classification of Oil and Gas Reservoirs 18
 1.4.1 Classification 1 19
 1.4.2 Classification 2 19
 1.4.3 Classification 3 20
 1.4.4 Other Classifications 21
 1.5 The Chemical Composition and Classification of Formation Water 21
 1.5.1 The Chemical Composition of Formation Water 21
 1.5.2 The Classification of Formation Water 23

2 Natural Gas Physical Properties Under High Pressure 27
 2.1 Apparent Molecular Weight and Density of Natural Gas 27
 2.1.1 Composition of Natural Gas 27
 2.1.2 The Molecular Weight of Natural Gas 30
 2.1.3 The Density and Specific Gravity of Natural Gas ... 31
 2.2 Equation of State for Natural Gas and Principle of Corresponding State 32
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>Equation of State (EOS) for Ideal Gas</td>
<td>32</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Equation of State (EOS) for Real Gas</td>
<td>33</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Principle of Corresponding State</td>
<td>34</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Other Equations of State for Natural Gas</td>
<td>47</td>
</tr>
<tr>
<td>2.2.5</td>
<td>The Calculation of Z-Factor Using State Equation Correlations</td>
<td>52</td>
</tr>
<tr>
<td>2.3</td>
<td>Physical Properties of Natural Gas Under High Pressure</td>
<td>55</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Natural Gas Formation Volume Factor (FVF)</td>
<td>55</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Isothermal Compressibility of Natural Gas</td>
<td>57</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Viscosity of Natural Gas</td>
<td>61</td>
</tr>
<tr>
<td>2.4</td>
<td>Natural Gas with Water Vapor and the Gas Hydrate</td>
<td>67</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Water Vapor Content in Natural Gas</td>
<td>67</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Natural Gas Hydrate</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Phase State of Reservoir Hydrocarbons and Gas–Liquid Equilibrium</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>Phase Behavior of Reservoir Hydrocarbon Fluids</td>
<td>76</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Phase and the Descriptive Approaches of Phase</td>
<td>76</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Phase Behavior of Single/Two–Component System</td>
<td>80</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Phase Behavior of Multicomponent System</td>
<td>84</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Phase Behaviors of Typical Reservoirs</td>
<td>90</td>
</tr>
<tr>
<td>3.2</td>
<td>Gas–Liquid Equilibrium</td>
<td>94</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Ideal Solution</td>
<td>94</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Phase-State Equations for Real Gas–Liquid System</td>
<td>101</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Evaluation of the Equilibrium Ratio K—By Charts</td>
<td>106</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Evaluation of the Equilibrium Ratio K—By Calculation</td>
<td>110</td>
</tr>
<tr>
<td>3.3</td>
<td>Solution and Separation of the Gas in an Oil–Gas System</td>
<td>113</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The Separation of Natural Gas from Cruel Oil</td>
<td>113</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Solution of Natural Gas in Crude Oil</td>
<td>120</td>
</tr>
<tr>
<td>3.4</td>
<td>Calculation of Oil–Gas Separation Problems Using Phase-State Equations</td>
<td>125</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Trial Calculation of Bubble-Point Pressure on Basis of Given Composition</td>
<td>125</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Comparison Between Single-Stage Degasification and Multistage Degasification</td>
<td>126</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Differential Liberation Calculation</td>
<td>130</td>
</tr>
<tr>
<td>4</td>
<td>Physical Properties of Reservoir Fluids Under Reservoir Conditions</td>
<td>135</td>
</tr>
<tr>
<td>4.1</td>
<td>High-Pressure Physical Properties of Reservoir Oil</td>
<td>135</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Density and Specific Gravity of Reservoir Oil</td>
<td>135</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Solution Gas–Oil Ratio of Reservoir Oil</td>
<td>137</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Formation Volume Factor of Oil</td>
<td>139</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Compressibility Coefficient of Reservoir Oil</td>
<td>142</td>
</tr>
</tbody>
</table>
4.1.5 Viscosity of Reservoir Oil .. 143
4.1.6 Freezing Point of Oil ... 147

4.2 Physical Properties of Formation Water Under High
Pressure ... 147
4.2.1 Composition and Chemical Classification of
Formation Water .. 148
4.2.2 High-Pressure Physical Properties of Formation
Water .. 148

4.3 Measurement and Calculation of High-Pressure Physical
Parameters of Reservoir Oil and Gas 153
4.3.1 Method to Measure the High-Pressure Properties
of Oil and Gas ... 153
4.3.2 To Obtain the High-Pressure Physical-Property
Parameters of Reservoir Oil by Charts 167
4.3.3 To Obtain the High-Pressure Physical-Property
Parameters of Reservoir Oil by Empirical Relation
Equations ... 170

4.4 Application of the Fluid High-Pressure Property Parameters:
Material Balance Equation of Hydrocarbons in Reservoirs 173
4.4.1 Derivation of Material Balance Equation 173
4.4.2 Analysis of the Parameters Used in Material
Balance Equation .. 176

Part II Physical Properties of Reservoir Rocks

5 Porosity of Reservoir Porous Medium 181
5.1 Constitution of Sandstone ... 181
5.1.1 Granulometric Composition of Sandstone 181
5.1.2 Specific Surface of Rock .. 188
5.1.3 Cementing Material and Type of Cementation 192
5.2 Pores in Reservoir Rocks .. 198
5.2.1 Types and Classification of Pores Within
Reservoir Rock ... 198
5.2.2 Size and Sorting of Pores .. 203
5.2.3 Pore Structure ... 205
5.3 Porosity of Reservoir Rocks .. 209
5.3.1 Definition of Porosity ... 209
5.3.2 Grade Reservoir Rocks According to Porosity 210
5.3.3 Porosity of Dual-Porosity Medium Rock 210
5.3.4 Measurement of Porosity ... 212
5.3.5 Factors Influencing Porosity of Rock 216
5.4 Compressibility of Reservoir Rocks 221
 5.4.1 Rock-Bulk Compressibility (Rock Compressibility) 221
 5.4.2 Total Compressibility 223
5.5 Fluid Saturation in Reservoir Rocks 225
 5.5.1 Definition of Fluid Saturation 225
 5.5.2 Methods of Determining Fluid Saturation 228

6 Permeability of Reservoir Rocks 233
 6.1 Darcy’s Law and Absolute Permeability of Rock 233
 6.1.1 Darcy’s Law .. 233
 6.1.2 Measurement of Absolute Permeability of Rock 236
 6.1.3 Applying Conditions of Darcy’s Law 237
 6.2 Gas Permeability and Slippage Effect 239
 6.2.1 Calculation Equations for Perm-Plug Method 239
 6.2.2 Slippage Effect 241
 6.3 Factors Affecting the Magnitude of Rock Permeability 245
 6.3.1 Deposition ... 245
 6.3.2 Diagenesis .. 248
 6.3.3 Tectogenesis and Others 250
 6.4 Measurement and Calculation of Permeability 250
 6.4.1 Laboratory Measurement of Permeability 250
 6.4.2 Evaluation of Permeability Based on Well-Logging Data .. 256
 6.4.3 Calculation of Permeability Based on Mean Pore Radius \(r \) and Porosity \(\phi \) 257
 6.4.4 Methods for the Calculation of Average Permeability ... 257
 6.5 Permeability of Naturally Fractured and Vuggy Rocks 262
 6.5.1 Permeability of pure-fractured rocks 263
 6.5.2 Permeability of fracture-pore double-medium rocks ... 265
 6.5.3 Permeability of vuggy rocks 266
 6.6 Ideal Models of Rock Structure 267
 6.6.1 Model of Bundles of Capillary Tubes 267
 6.6.2 Network Model 273
 6.7 Sensibility of Sandstone Reservoir Rocks 275
 6.7.1 Sensitive Minerals Present in Sandstone Cementing Materials 276
 6.7.2 Evaluation for Formation Sensibility 289

7 Other Physical Properties of Reservoir Rocks 297
 7.1 Electrical Conductivity of Fluids-Bearing Rocks 297
 7.1.1 Electrical Conductivity and Resistivity of Material ... 297
 7.1.2 Relationship Between Electric Resistivity of Rock and Formation Water Properties 299
7.1.3 Relationship Between Electric Resistivity of Water-Bearing Rocks and Porosity 302
7.1.4 Relationship Between Electrical Resistivity of Oil-Bearing Rocks and Saturations 306
7.1.5 Measurement of Electrical Resistivity of Rocks 309
7.2 Thermal Properties of Reservoir Rocks 310
7.2.1 Heat Capacity of Oil-Bearing Formations 310
7.2.2 Specific Heat Capacity of Rock 310
7.2.3 Heat Conductivity Coefficient 311
7.2.4 Thermal Diffusion Coefficient 312
7.3 Acoustic Characteristics of Reservoir Rocks 312

Part III Mechanics of Multi-Phase Flow in Reservoir Rocks

8 Interfacial Phenomena and Wettability of Reservoir Rocks 317
 8.1 Interfacial Tension Between Reservoir Fluids 317
 8.1.1 Free Surface Energy of the Interface Between Two Phases 317
 8.1.2 Specific Surface Energy and Surface Tension 319
 8.1.3 Influencing Factors on Surface Tension 322
 8.1.4 Interfacial Tension Between Reservoir Fluids 323
 8.1.5 Measurement of Surface Tension 327
 8.2 Interfacial Adsorption 331
 8.2.1 Concept of Adsorption 331
 8.2.2 Adsorption at the Gas–Liquid Interface (Surface Adsorption) 331
 8.2.3 Adsorption at the Gas–Solid Interface 335
 8.2.4 Adsorption at the Liquid–Solid Interface 336
 8.2.5 Wetting Phenomena and Capillary Force 337
 8.2.6 Interfacial Viscosity 338
 8.3 Wettability of Reservoir Rocks 338
 8.3.1 Basic Concepts About Wettability of Reservoir Rocks 339
 8.3.2 Wetting Hysteresis 343
 8.3.3 Influencing Factors for the Wettability of Reservoir Rocks 346
 8.3.4 Distribution of Oil and Water in Rock Pore Space 350
 8.3.5 Measurement of Wettability of Reservoir Rocks 356

9 Capillary Pressure and Capillary Pressure Curve 365
 9.1 Concept of Capillary Pressure 365
 9.1.1 Rise of Fluids in Capillary Tube 365
 9.1.2 Additional Force Across Differently Shaped Curved Interfaces 370
9.1.3 Resistances Caused by Capillary Force 376
9.1.4 Capillary Hysteresis 379

9.2 Measurement and Calculation of Capillary Pressure Curves
of Rock .. 383

9.2.1 Porous Diaphragm Plate Method 384
9.2.2 Mercury Injection Method 388
9.2.3 Centrifuge Method 391
9.2.4 Conversion Between the Capillary Forces Obtained
Through Different Methods of Measurement 393

9.3 Essential Features of Capillary Pressure Curve 398

9.3.1 Qualitative Features of Capillary Pressure Curve 398
9.3.2 Quantitative Features of Capillary Pressure Curve 399
9.3.3 Factors Affecting Capillary Pressure Curve 400

9.4 Application of Capillary Pressure Curve 405

9.4.1 Determine the Wettability of Reservoir Rocks 405
9.4.2 Averaging Capillary Pressure Data: J(S_w) Function 406
9.4.3 Determination of the Fluid Saturation in the
Oil–Water Transition Zone 409
9.4.4 Calculation of Recovery by Using Capillary Loop 410
9.4.5 Calculation of Absolute Permeability of Rock 411
9.4.6 Estimation of the Degree of Damage on Formation.... 412

10 Multiphase Flow Through Porous Medium and Relative
Permeability Curve 413

10.1 Characteristics of Multiphase Flow Through Porous
Medium ... 413

10.1.1 Non-piston-Like Displacement 414
10.1.2 Unconnected Capillary Pore-Channels,
Single-Phase Fluid Flowing 416
10.1.3 Unconnected Capillary Pore-Channels,
Two-Phase Fluid Flowing 417
10.1.4 Unequal-Diameter Pore-Channels Connected
in Parallel, Two-Phase Fluid 420
10.1.5 Flow of Mixed Liquids Through Capillary
Pore-Channels 422

10.2 Two-Phase Relative Permeability 424

10.2.1 Effective and Relative Permeability 424
10.2.2 Characterizing Features of Relative Permeability
Curve .. 426
10.2.3 Factors Affecting Relative Permeability 431

10.3 Three-Phase Relative Permeability 441

10.3.1 Relative Permeabilities for Pseudo-Three-Phase
Flow System .. 441
10.3.2 Relative Permeabilities for Real Three-Phase
Flow System .. 442
10.4 Measurements and Calculations of Relative Permeability Curves .. 444
10.4.1 Steady-State Method 444
10.4.2 Unsteady-State Method 447
10.4.3 Relevant Problems in the Measurement of Relative Permeability 449
10.4.4 Calculation of Relative Permeability Curves from Capillary Pressure Data 453
10.4.5 Calculation of Relative Permeability from Empirical Equations 456
10.4.6 Calculation of Relative Permeability from Field Data .. 457
10.5 Use of Relative Permeability Curves 460
10.5.1 Calculation of Production, Water–Oil Ratio, and Fluidity 460
10.5.2 Analysis of the Water Production Regularity of Oil Wells 461
10.5.3 Determination of Vertical Distribution of Oil and Water in Reservoir 464
10.5.4 Determination of Free Water Surface 465
10.5.5 Calculation of Displacement Efficiency and Water Drive Recovery 467
10.5.6 Other Usage of Relative Permeability Data 471

Appendix A: Unit Conversion Tables .. 473
Appendix B: Vocabulary of Technical Terms in Chapters 477
Appendix C: Charts of Equilibrium Ratio 487
References .. 501
Fundamentals of Petrophysics
Yang, S.
2017, XVIII, 502 p. 281 illus., 8 illus. in color., Hardcover
ISBN: 978-3-662-55028-1