Contents

1 Physics Basis of Organic Semiconductor Heterojunctions 1
 1.1 Basic Concept of Heterojunctions 1
 1.2 Theory of Heterojunctions 4
 1.2.1 Diffusion Model ... 7
 1.2.2 Emission Model .. 9
 1.2.3 Tunneling Model ... 10
 1.2.4 Emission Recombination Model 11
 1.2.5 Tunneling Recombination Model 11
 1.3 Energy Band Profiles of Heterojunctions 13
 1.3.1 Profiles of Abrupt Anisotype P/N Heterojunctions 14
 1.3.2 Profiles of Abrupt Anisotype N/P Heterojunctions 17
 1.4 Basic Properties of Organic Heterojunctions 20
 1.5 Brief Description of Organic Heterojunction Application
 in Organic Light-Emitting Diodes 31
 References ... 35

2 Electrical Properties of Organic Semiconductor Heterojunctions 37
 2.1 Current–Voltage Characteristics 37
 2.2 Capacitance–Voltage Characteristics 46
 2.3 Charge Transport Properties 51
 2.4 Charge Generation Properties 54
 References ... 57

3 Organic Semiconductor Heterojunctions as Charge Injector
 in Organic Light-Emitting Diodes 59
 3.1 Basic Condition as Charge Injector 59
 3.2 As Hole Injector for High-Efficiency Organic
 Light-Emitting Diodes .. 61
 3.3 As Electron Injector for High-Efficiency Organic
 Light-Emitting Diodes .. 70
3.4 As Hole and Electron Injectors for High-Efficiency Organic Light-Emitting Diodes ... 77
References .. 87

4 Organic Semiconductor Heterojunctions as Charge Generation Layer in Tandem Organic Light-Emitting Diodes 89
4.1 Basic Condition as Charge Generation Layer 89
4.2 Doped-NDoped-P Heterojunction as Charge Generation Layer for High-Efficiency Tandem Organic Light-Emitting Diodes ... 92
4.3 N/P Bilayer Heterojunction as Charge Generation Layer for High-Efficiency Tandem Organic Light-Emitting Diodes 97
4.4 N:P Bulk Heterojunction as Charge Generation Layer for High-Efficiency Tandem Organic Light-Emitting Diodes 115
4.5 N/N:P/P Composited Heterojunction as Charge Generation Layer for High-Efficiency Tandem Organic Light-Emitting Diodes ... 118
References .. 125

5 Tandem White Organic Light-Emitting Diodes Based on Organic Semiconductor Heterojunctions 127
5.1 Basic Structures of Tandem White Organic Light-Emitting Diodes .. 127
5.2 Fluorescence Tandem White Organic Light-Emitting Diodes ... 132
5.3 Phosphorescence Tandem White Organic Light-Emitting Diodes .. 136
5.4 Fluorescence/Phosphorescence Hybrid Tandem White Organic Light-Emitting Diodes ... 142
5.5 Applications of Tandem White Organic Light-Emitting Diodes in Display and Lighting ... 147
References .. 150

Subject Index .. 153
Organic Semiconductor Heterojunctions and Its
Application in Organic Light-Emitting Diodes
Ma, D.; Chen, Y.
2017, VIII, 153 p. 148 illus., Hardcover
ISBN: 978-3-662-53693-3