Contents

1 New Developments and Decision-makings in Production and Retailing .. 1
 1.1 Production and Retail Operations 1
 1.1.1 New Developments in Manufacturing 1
 1.1.2 New Developments in Retailing 2
 1.2 Previous Studies on Decision-making Problems in Production and Retailing 3
 1.2.1 Production Planning 4
 1.2.2 Production Scheduling 4
 1.2.3 Assembly Line Balancing 6
 1.2.4 Sales Forecasting 7
 1.3 Techniques for Decision-making Problems in Production and Retailing 8
 1.3.1 Techniques for Production Optimization Problems ... 8
 1.3.2 Techniques for Sales Forecasting Problems 10
 1.4 Summary ... 10
 References ... 10

2 Fundamentals of Intelligent Decision-Making Techniques 19
 2.1 Computational Intelligence Techniques: A Brief Overview 19
 2.1.1 What Is CI? 20
 2.1.2 Why Do We Need CI? 20
 2.1.3 Classification of CI Techniques 21
 2.2 Evolutionary Computation 22
 2.2.1 Optimum-Seeking Mechanism of Evolutionary Computation Techniques 23
 2.2.2 Brief Introduction to Genetic Algorithm 24
 2.2.3 Brief Introduction to Evolution Strategy 25
 2.2.4 Brief Introduction to Harmony Search 26
 2.2.5 Brief Introduction to Memetic Algorithm 27
2.3 Feedforward Neural Networks
 2.3.1 Brief Introduction to FNNs
 2.3.2 Backpropagation Networks
 2.3.3 Extreme Learning Machine Networks
2.4 Summary
References

3 An Intelligent Optimization Model for Order Scheduling at Plant Level
 3.1 Introduction
 3.2 Problem Statement
 3.2.1 Problem Description and Assumptions
 3.2.2 Notations
 3.2.3 Mathematical Model
 3.3 Uncertain Completion and Beginning Times
 3.3.1 Completion Time of Production Process
 3.3.2 Beginning Time of Production Process
 3.4 Genetic Algorithm-Based Intelligent Optimization Approach for Order Scheduling Problem
 3.4.1 Representation
 3.4.2 Initialization
 3.4.3 Fitness and Selection
 3.4.4 Genetic Operators
 3.4.5 Termination Criterion
 3.5 Experimental Results and Discussion
 3.5.1 Experiment 1: Order Scheduling with Uncertain Processing Time
 3.5.2 Experiment 2: Order Scheduling with Uncertain Order
 3.5.3 Experiment 3: Order Scheduling with Uncertain Arrival Times
 3.6 Conclusions
Appendix
References

4 A Bilevel Intelligent Optimization Model for Assembly Line Scheduling with Flexible Operation Assignment
 4.1 Introduction
 4.2 Problem Statement
 4.2.1 Problem Description and Assumptions
 4.2.2 Notations
 4.2.3 Mathematical Model
References
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Problem Statement</td>
<td>117</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Problem Description and Assumptions</td>
<td>117</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Notations</td>
<td>118</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Mathematical Model</td>
<td>119</td>
</tr>
<tr>
<td>6.3</td>
<td>Evolution Strategy-Based Multi-objective Optimization Approach for Order Planning Problems</td>
<td>120</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Outline of ESMOO Approach</td>
<td>120</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Representation and Population Initialization</td>
<td>122</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Evolutionary Operators</td>
<td>123</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Performance Evaluation</td>
<td>123</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Self-Adaptive Population Size Adjustment</td>
<td>125</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Pruning the Pareto-Optimal Sets</td>
<td>125</td>
</tr>
<tr>
<td>6.4</td>
<td>Numerical Experiments</td>
<td>126</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Experimental Data and Setting</td>
<td>126</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Experimental Results</td>
<td>127</td>
</tr>
<tr>
<td>6.5</td>
<td>Discussions</td>
<td>131</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Comparison Between Proposed Approach and Industrial Practice</td>
<td>131</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Effects of Self-Adaptive Population Size Adjustment</td>
<td>134</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusions</td>
<td>135</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>

7 A Multi-objective Hybrid Intelligent Optimization Model for Order Planning with Uncertainties | 147 |
7.1	Introduction	147
7.1.1	Previous Studies in Production Planning Decision-Making	148
7.1.2	Optimization Techniques for Production Decision-Making	149
7.2	Problem Statement	150
7.2.1	Problem Description and Assumptions	150
7.2.2	Notations	151
7.2.3	Mathematical Model	152
7.3	Multi-objective Hybrid Intelligent Approach for Order Planning	154
7.3.1	Multi-objective Memetic Optimization	155
7.3.2	Monte Carlo Simulation for Production Uncertainties	159
7.3.3	Heuristic Pruning Process	159
7.4	Numerical Experiments	160
7.4.1	Experimental Data and Setting	160
7.4.2	Experimental Results	162
8 A Harmony Search-Based Hybrid Intelligent Optimization Model for Order Planning with Learning Effects

8.1 Introduction ... 187
8.2 Problem Statement 190
 8.2.1 Problem Description and Assumptions 190
 8.2.2 Notations ... 191
 8.2.3 Mathematical Model 193
8.3 HS-Based Hybrid Intelligent Optimization Approach for Multi-Site Order Planning Problem 195
 8.3.1 HS-Based Pareto Optimization 196
 8.3.2 Monte Carlo Simulation for Production Uncertainties ... 201
8.4 Numerical Experiments 201
 8.4.1 Experimental Design 201
 8.4.2 Experiment Results 202
8.5 Discussions ... 210
 8.5.1 Performance Comparison 210
 8.5.2 Effects of Learning Phenomenon on Order Planning Decision-Making 214
8.6 Conclusions .. 214
Appendix ... 215
References ... 230
9.4.3 Remote Real-Time Production Tracking (RRPT) Model ... 245
9.4.4 Remote Intelligent Scheduling Decision-Making (RISD) Model ... 246
9.5 Prototype System Development and Implementation ... 248
9.6 Evaluation .. 251
9.7 Discussion ... 253
 9.7.1 Cloud-Based Architecture ... 253
 9.7.2 Extensibility and Scalability of the RCIDSS Architecture .. 254
 9.7.3 Difficulties Encountered and Lessons Learned ... 254
 9.7.4 Implications .. 255
9.8 Conclusions ... 256
References .. 258

10 A Neural Network-Based Forecasting Model for Univariate Sales Forecasting .. 261
 10.1 Introduction ... 261
 10.2 Sparsely Connected Neural Network ... 263
 10.2.1 Apollonian Network ... 263
 10.2.2 Network Structure ... 264
 10.2.3 Learning Algorithm ... 266
 10.3 Numerical Experiments ... 268
 10.3.1 Experiment 1 ... 269
 10.3.2 Experiment 2 ... 271
 10.3.3 Experiment 3 ... 272
 10.4 Discussion ... 273
 10.4.1 Performance of SCNNs in Time Series Forecasting ... 273
 10.4.2 Effects of Different Training Sample Sizes ... 276
 10.4.3 Effects of Different Accuracy Measures ... 278
 10.4.4 Limitations and Suggestions for Further Research ... 279
 10.5 Conclusion ... 280
Appendix A Experimental Results of Experiment 1 ... 280
Appendix B Experimental Results of Experiment 2 ... 284
Appendix C Experimental Results of Experiment 3 ... 288
References .. 292

11 An Extreme Learning Machine-Based Intelligent Decision-Making Model for Multivariate Sales Forecasting 295
 11.1 Introduction ... 295
 11.1.1 Sales Forecasting ... 296
 11.1.2 Techniques for Sales Forecasting ... 297
11.2 Multivariate Intelligent Decision-Making Model for Sales Forecasting

- **11.2.1 Data Preparation and Preprocessing** .. 299
- **11.2.2 HS-Wrapper-Based Variable Selection** 301
- **11.2.3 Multivariate Intelligent Forecaster** 302

11.3 Numerical Experiments ... 303

- **11.3.1 Experimental Design** .. 304
- **11.3.2 Experiment 1** ... 305
- **11.3.3 Experiment 2** ... 308
- **11.3.4 Experiment 3** ... 309
- **11.3.5 Experiment 4** ... 309

11.4 Discussion ... 311

- **11.4.1 Further Performance Comparison and Analysis** 311
- **11.4.2 Performance and Effects of HWVS Module** 313

11.5 Conclusions .. 314

References ... 315

12 New Directions .. 317

- **12.1 Limitations of Previous Studies** .. 317
- **12.2 New Decision-Making Problems in Production and Retail Operations** .. 318
- **12.4 Discussion** .. 322

References ... 323
Intelligent Decision-making Models for Production and Retail Operations
Guo, Z.
2016, XI, 324 p. 84 illus., Hardcover
ISBN: 978-3-662-52679-8