Contents

1 Introduction ... 1
 1.1 Haptic Interaction Systems 1
 1.1.1 Human Haptic Perception and Manipulation 1
 1.1.2 Classification of Haptic Interfaces 3
 1.1.3 Overview of Haptic Interaction Systems 4
 1.1.4 Example Applications 5
 1.2 Haptic Rendering: A Brief History 6
 1.3 6-DoF Haptic Rendering .. 8
 1.3.1 Penalty-based Approach 9
 1.3.2 Constraint-based Approach 11
 1.3.3 Impulse-based Approach 12
 1.4 Fine Manipulation and Its Computational Challenges 12
 1.4.1 Characterization of Fine Manipulation 12
 1.4.2 Narrow Space Constraints 15
 1.4.3 Simulation of Fine Features 17
 References ... 17

2 Configuration-based Optimization Approach 21
 2.1 Overview of the Approach 21
 2.1.1 Problem Formulation 21
 2.1.2 Framework .. 23
 2.2 Object and Contact Modeling Using Sphere Trees 26
 2.2.1 Difficulties of Using Polygonal Meshes to Model Objects.. 26
 2.2.2 Contact Modeling Based on Sphere Trees 30
 2.2.3 Construction of Sphere Trees 31
 2.3 Collision Response .. 33
 2.3.1 Non-linear Transform from C-Space to Cartesian Space 33
 2.3.2 Linearized Model of the Non-penetration Constraints ... 33

References ... 33
2.3.3 Active Set Method for Solving Constrained Optimization ... 34
2.3.4 Contact Constraint-prediction Algorithm (CCP). 35
2.4 Six-dimensional Force/Torque Simulation ... 37
2.4.1 Existing Literature 37
2.4.2 Force/Torque Computation for Frictionless Contacts 38
2.4.3 Force/Torque Computation for Frictional Contacts 39
2.5 Experimental Validation ... 42
2.5.1 Results of Accuracy Analysis ... 43
2.5.2 Stability and Update Rate—Exp 1: Dental Operations 45
2.5.3 Stability and Update Rate—Exp 2: Bunny Versus Bunny 48
2.5.4 Stability and Update Rate—Exp 3: Buddha Versus Dragon 50
2.5.5 Stability and Update Rate—Exp 4: Bunny Navigating 51
2.5.6 Validation of Friction Simulation .. 51
2.6 Summary ... 54
References ... 55

3 6-DoF Haptic Simulation of Geometric Fine Features 59
3.1 Classification and Challenges in Simulating Fine Features 59
3.2 Proposed Approach for Simulating Sharp Features 62
3.3 Multi-resolution Sphere-Tree Model for Sharp Features 64
3.3.1 Perception-based Modeling Method 64
3.3.2 Hybrid Sphere-Tree Construction 65
3.3.3 Sphere List Construction .. 67
3.4 Collision Detection for Objects with Fine Features 68
3.4.1 Hybrid Sphere-Tree-Based Collision Detection 69
3.4.2 Sphere-Tree-Based Continuous Collision Detection 69
3.5 Fast Collision Response with PQP 71
3.6 Performance Analysis on Simulating Sharp Features 73
3.6.1 Perception Experiments: Comparative Study 73
3.6.2 Perception Experiments: Shape Matching 76
3.6.3 Experiments for Objective Evaluation 79
3.6.4 Performance of the PQP-based Accelerating Method 84
3.7 Summary ... 86
References ... 86

4 6-DoF Haptic Simulation of Deformable Objects 89
4.1 Related Work ... 89
4.2 Overview of the Approach ... 91
4.3 Modeling Using Sphere-Trees with Springs 93
Evaluation of Haptic Rendering Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Related Literature</td>
<td>117</td>
</tr>
<tr>
<td>5.2</td>
<td>Objective Evaluation Based on Measurement Data</td>
<td>119</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Framework</td>
<td>119</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Metrics of Accuracy</td>
<td>120</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Measurement System for Force and Motion Capture</td>
<td>121</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Computational Model of the Haptic Tool’s Location</td>
<td>122</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Two Example Rendering Methods</td>
<td>124</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Experimental Results</td>
<td>125</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary</td>
<td>129</td>
</tr>
</tbody>
</table>

Application: A Dental Simulator

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Background</td>
<td>131</td>
</tr>
<tr>
<td>6.2</td>
<td>Overview of iDental Simulation System</td>
<td>133</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Function Requirements</td>
<td>134</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Components and Features of the Simulator</td>
<td>135</td>
</tr>
<tr>
<td>6.3</td>
<td>Modeling Various Tissues and Pathological Changes</td>
<td>138</td>
</tr>
<tr>
<td>6.4</td>
<td>Bimanual Periodontal Operation Tasks</td>
<td>141</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Periodontal Pocket Probing Examination</td>
<td>141</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Calculus Detection and Removal</td>
<td>143</td>
</tr>
<tr>
<td>6.5</td>
<td>Hybrid Evaluation Approach</td>
<td>145</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Subjective Evaluation Method</td>
<td>145</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Objective Evaluation Method</td>
<td>146</td>
</tr>
</tbody>
</table>
Haptic Rendering for Simulation of Fine Manipulation
Wang, D.; Xiao, J.; Zhang, Y.
2014, XII, 162 p. 127 illus., 108 illus. in color., Hardcover
ISBN: 978-3-662-44948-6