Part I Distributed Graph Algorithms

1 **Basic Definitions and Network Traversal Algorithms**
 1.1 Distributed Algorithms
 1.1.1 Definition
 1.1.2 An Introductory Example: Learning the Communication Graph
 1.2 Parallel Traversal: Broadcast and Convergecast
 1.2.1 Broadcast and Convergecast
 1.2.2 A Flooding Algorithm
 1.2.3 Broadcast/Convergecast Based on a Rooted Spanning Tree
 1.2.4 Building a Spanning Tree
 1.3 Breadth-First Spanning Tree
 1.3.1 Breadth-First Spanning Tree Built Without Centralized Control
 1.3.2 Breadth-First Spanning Tree Built with Centralized Control
 1.4 Depth-First Traversal
 1.4.1 A Simple Algorithm
 1.4.2 Application: Construction of a Logical Ring
 1.5 Summary
 1.6 Bibliographic Notes
 1.7 Exercises and Problems

2 **Distributed Graph Algorithms**
 2.1 Distributed Shortest Path Algorithms
 2.1.1 A Distributed Adaptation of Bellman–Ford’s Shortest Path Algorithm
 2.1.2 A Distributed Adaptation of Floyd–Warshall’s Shortest Paths Algorithm
 2.2 Vertex Coloring and Maximal Independent Set
 2.2.1 On Sequential Vertex Coloring
2.2.2 Distributed \((\Delta + 1)\)-Coloring of Processes 43
2.2.3 Computing a Maximal Independent Set 46
2.3 Knot and Cycle Detection 50
2.3.1 Directed Graph, Knot, and Cycle 50
2.3.2 Communication Graph, Logical Directed Graph, and Reachability 51
2.3.3 Specification of the Knot Detection Problem 51
2.3.4 Principle of the Knot/Cycle Detection Algorithm 52
2.3.5 Local Variables 53
2.3.6 Behavior of a Process 54
2.4 Summary ... 57
2.5 Bibliographic Notes 58
2.6 Exercises and Problems 58

3 An Algorithmic Framework to Compute Global Functions on a Process Graph 59
3.1 Distributed Computation of Global Functions 59
3.1.1 Type of Global Functions 59
3.1.2 Constraints on the Computation 60
3.2 An Algorithmic Framework 61
3.2.1 A Round-Based Framework 61
3.2.2 When the Diameter Is Not Known 64
3.3 Distributed Determination of Cut Vertices 66
3.3.1 Cut Vertices .. 66
3.3.2 An Algorithm Determining Cut Vertices 67
3.4 Improving the Framework 69
3.4.1 Two Types of Filtering 69
3.4.2 An Improved Algorithm 70
3.5 The Case of Regular Communication Graphs 72
3.5.1 Tradeoff Between Graph Topology and Number of Rounds 72
3.5.2 De Bruijn Graphs 73
3.6 Summary ... 75
3.7 Bibliographic Notes 76
3.8 Problem ... 76

4 Leader Election Algorithms 77
4.1 The Leader Election Problem 77
4.1.1 Problem Definition 77
4.1.2 Anonymous Systems: An Impossibility Result 78
4.1.3 Basic Assumptions and Principles of the Election Algorithms 79
4.2 A Simple \(O(n^2)\) Leader Election Algorithm for Unidirectional Rings 79
4.2.1 Context and Principle 79
4.2.2 The Algorithm 80
4.2.3 Time Cost of the Algorithm 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.4</td>
<td>Message Cost of the Algorithm</td>
<td>81</td>
</tr>
<tr>
<td>4.2.5</td>
<td>A Simple Variant</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>An $O(n \log n)$ Leader Election Algorithm for Bidirectional Rings</td>
<td>83</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Context and Principle</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The Algorithm</td>
<td>84</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Time and Message Complexities</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>An $O(n \log n)$ Election Algorithm for Unidirectional Rings</td>
<td>86</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Context and Principles</td>
<td>86</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The Algorithm</td>
<td>88</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Discussion: Message Complexity and FIFO Channels</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>Two Particular Cases</td>
<td>89</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary</td>
<td>90</td>
</tr>
<tr>
<td>4.7</td>
<td>Bibliographic Notes</td>
<td>90</td>
</tr>
<tr>
<td>4.8</td>
<td>Exercises and Problems</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>Mobile Objects Navigating a Network</td>
<td>93</td>
</tr>
<tr>
<td>5.1</td>
<td>Mobile Object in a Process Graph</td>
<td>93</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Problem Definition</td>
<td>93</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Mobile Object Versus Mutual Exclusion</td>
<td>94</td>
</tr>
<tr>
<td>5.1.3</td>
<td>A Centralized (Home-Based) Algorithm</td>
<td>94</td>
</tr>
<tr>
<td>5.1.4</td>
<td>The Algorithms Presented in This Chapter</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>A Navigation Algorithm for a Complete Network</td>
<td>96</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Underlying Principles</td>
<td>96</td>
</tr>
<tr>
<td>5.2.2</td>
<td>The Algorithm</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>A Navigation Algorithm Based on a Spanning Tree</td>
<td>100</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Principles of the Algorithm:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tree Invariant and Proxy Behavior</td>
<td>101</td>
</tr>
<tr>
<td>5.3.2</td>
<td>The Algorithm</td>
<td>102</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Discussion and Properties</td>
<td>104</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Proof of the Algorithm</td>
<td>106</td>
</tr>
<tr>
<td>5.4</td>
<td>An Adaptive Navigation Algorithm</td>
<td>108</td>
</tr>
<tr>
<td>5.4.1</td>
<td>The Adaptivity Property</td>
<td>109</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Principle of the Implementation</td>
<td>109</td>
</tr>
<tr>
<td>5.4.3</td>
<td>An Adaptive Algorithm Based on a Distributed Queue</td>
<td>111</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Properties</td>
<td>113</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Example of an Execution</td>
<td>114</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary</td>
<td>115</td>
</tr>
<tr>
<td>5.6</td>
<td>Bibliographic Notes</td>
<td>115</td>
</tr>
<tr>
<td>5.7</td>
<td>Exercises and Problems</td>
<td>116</td>
</tr>
</tbody>
</table>

Part II Logical Time and Global States in Distributed Systems

6 Nature of Distributed Computations and the Concept of a Global State

6.1 A Distributed Execution Is a Partial Order on Local Events

6.1.1 Basic Definitions
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2</td>
<td>A Distributed Execution Is a Partial Order on Local Events</td>
<td>122</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Causal Past, Causal Future, Concurrency, Cut</td>
<td>123</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Asynchronous Distributed Execution with Respect to Physical Time</td>
<td>125</td>
</tr>
<tr>
<td>6.2</td>
<td>A Distributed Execution Is a Partial Order on Local States</td>
<td>127</td>
</tr>
<tr>
<td>6.3</td>
<td>Global State and Lattice of Global States</td>
<td>129</td>
</tr>
<tr>
<td>6.3.1</td>
<td>The Concept of a Global State</td>
<td>129</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Lattice of Global States</td>
<td>129</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Sequential Observations</td>
<td>131</td>
</tr>
<tr>
<td>6.4</td>
<td>Global States Including Process States and Channel States</td>
<td>132</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Global State Including Channel States</td>
<td>132</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Consistent Global State Including Channel States</td>
<td>133</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Consistent Global State Versus Consistent Cut</td>
<td>134</td>
</tr>
<tr>
<td>6.5</td>
<td>On-the-Fly Computation of Global States</td>
<td>135</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Global State Computation Is an Observation Problem</td>
<td>135</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Problem Definition</td>
<td>136</td>
</tr>
<tr>
<td>6.5.3</td>
<td>On the Meaning of the Computed Global State</td>
<td>136</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Principles of Algorithms Computing a Global State</td>
<td>137</td>
</tr>
<tr>
<td>6.6</td>
<td>A Global State Algorithm Suited to FIFO Channels</td>
<td>138</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Principle of the Algorithm</td>
<td>138</td>
</tr>
<tr>
<td>6.6.2</td>
<td>The Algorithm</td>
<td>140</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Example of an Execution</td>
<td>141</td>
</tr>
<tr>
<td>6.7</td>
<td>A Global State Algorithm Suited to Non-FIFO Channels</td>
<td>143</td>
</tr>
<tr>
<td>6.7.1</td>
<td>The Algorithm and Its Principles</td>
<td>144</td>
</tr>
<tr>
<td>6.7.2</td>
<td>How to Compute the State of the Channels</td>
<td>144</td>
</tr>
<tr>
<td>6.8</td>
<td>Summary</td>
<td>146</td>
</tr>
<tr>
<td>6.9</td>
<td>Bibliographic Notes</td>
<td>146</td>
</tr>
<tr>
<td>6.10</td>
<td>Exercises and Problems</td>
<td>147</td>
</tr>
<tr>
<td>7</td>
<td>Logical Time in Asynchronous Distributed Systems</td>
<td>149</td>
</tr>
<tr>
<td>7.1</td>
<td>Linear Time</td>
<td>149</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Scalar (or Linear) Time</td>
<td>150</td>
</tr>
<tr>
<td>7.1.2</td>
<td>From Partial Order to Total Order: The Notion of a Timestamp</td>
<td>151</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Relating Logical Time and Timestamps with Observations</td>
<td>152</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Timestamps in Action: Total Order Broadcast</td>
<td>153</td>
</tr>
<tr>
<td>7.2</td>
<td>Vector Time</td>
<td>159</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Vector Time and Vector Clocks</td>
<td>159</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Vector Clock Properties</td>
<td>162</td>
</tr>
<tr>
<td>7.2.3</td>
<td>On the Development of Vector Time</td>
<td>163</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Relating Vector Time and Global States</td>
<td>165</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Vector Clocks in Action: On-the-Fly Determination of a Global State Property</td>
<td>166</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Vector Clocks in Action: On-the-Fly Determination of the Immediate Predecessors</td>
<td>170</td>
</tr>
<tr>
<td>7.3</td>
<td>On the Size of Vector Clocks</td>
<td>173</td>
</tr>
</tbody>
</table>
7.3.1 A Lower Bound on the Size of Vector Clocks 174
7.3.2 An Efficient Implementation of Vector Clocks 176
7.3.3 k-Restricted Vector Clock 181

7.4 Matrix Time .. 182
7.4.1 Matrix Clock: Definition and Algorithm 182
7.4.2 A Variant of Matrix Time in Action: Discard Old Data .. 184

7.5 Summary ... 186
7.6 Bibliographic Notes 186
7.7 Exercises and Problems 187

8 Asynchronous Distributed Checkpointing 189
8.1 Definitions and Main Theorem 189
8.1.1 Local and Global Checkpoints 189
8.1.2 Z-Dependency, Zigzag Paths, and Z-Cycles 190
8.1.3 The Main Theorem 192
8.2 Consistent Checkpointing Abstractions 196
8.2.1 Z-Cycle-Freedom 196
8.2.2 Rollback-Dependency Trackability 197
8.2.3 On Distributed Checkpointing Algorithms 198
8.3 Checkpointing Algorithms Ensuring Z-Cycle Prevention 199
8.3.1 An Operational Characterization of Z-Cycle-Freedom .. 199
8.3.2 A Property of a Particular Dating System 199
8.3.3 Two Simple Algorithms Ensuring Z-Cycle Prevention .. 201
8.3.4 On the Notion of an Optimal Algorithm for Z-Cycle Prevention ... 203
8.4 Checkpointing Algorithms Ensuring Rollback-Dependency Trackability .. 203
8.4.1 Rollback-Dependency Trackability (RDT) 203
8.4.2 A Simple Brute Force RDT Checkpointing Algorithm .. 205
8.4.3 The Fixed Dependency After Send (FDAS) RDT Checkpointing Algorithm 206
8.4.4 Still Reducing the Number of Forced Local Checkpoints .. 207
8.5 Message Logging for Uncoordinated Checkpointing 211
8.5.1 Uncoordinated Checkpointing 211
8.5.2 To Log or Not to Log Messages on Stable Storage ... 211
8.5.3 A Recovery Algorithm 214
8.5.4 A Few Improvements 215
8.6 Summary ... 216
8.7 Bibliographic Notes 216
8.8 Exercises and Problems 217

9 Simulating Synchrony on Top of Asynchronous Systems 219
9.1 Synchronous Systems, Asynchronous Systems, and Synchronizers 219
9.1.1 Synchronous Systems 219
9.1.2 Asynchronous Systems and Synchronizers 221
9.1.3 On the Efficiency Side 222
9.2 Basic Principle for a Synchronizer 223
 9.2.1 The Main Problem to Solve 223
 9.2.2 Principle of the Solutions 224
9.3 Basic Synchronizers: \(\alpha \) and \(\beta \) 224
 9.3.1 Synchronizer \(\alpha \) 224
 9.3.2 Synchronizer \(\beta \) 227
9.4 Advanced Synchronizers: \(\gamma \) and \(\delta \) 230
 9.4.1 Synchronizer \(\gamma \) 230
 9.4.2 Synchronizer \(\delta \) 234
9.5 The Case of Networks with Bounded Delays 236
 9.5.1 Context and Hypotheses 236
 9.5.2 The Problem to Solve 237
 9.5.3 Synchronizer \(\lambda \) 238
 9.5.4 Synchronizer \(\mu \) 239
 9.5.5 When the Local Physical Clocks Drift 240
9.6 Summary .. 242
9.7 Bibliographic Notes .. 243
9.8 Exercises and Problems ... 244

Part III Mutual Exclusion and Resource Allocation

10 Permission-Based Mutual Exclusion Algorithms 247
 10.1 The Mutual Exclusion Problem 247
 10.1.1 Definition ... 247
 10.1.2 Classes of Distributed Mutex Algorithms 248
 10.2 A Simple Algorithm Based on Individual Permissions 249
 10.2.1 Principle of the Algorithm 249
 10.2.2 The Algorithm .. 251
 10.2.3 Proof of the Algorithm 252
 10.2.4 From Simple Mutex to Mutex on Classes of Operations .. 255
 10.3 Adaptive Mutex Algorithms Based on Individual Permissions ... 256
 10.3.1 The Notion of an Adaptive Algorithm 256
 10.3.2 A Timestamp-Based Adaptive Algorithm 257
 10.3.3 A Bounded Adaptive Algorithm 259
 10.3.4 Proof of the Bounded Adaptive Mutex Algorithm 262
 10.4 An Algorithm Based on Arbiter Permissions 264
 10.4.1 Permissions Managed by Arbiters 264
 10.4.2 Permissions Versus Quorums 265
 10.4.3 Quorum Construction 266
 10.4.4 An Adaptive Mutex Algorithm Based on Arbiter Permissions ... 268
 10.5 Summary .. 273
 10.6 Bibliographic Notes .. 273
 10.7 Exercises and Problems ... 274
11 Distributed Resource Allocation 277
 11.1 A Single Resource with Several Instances 277
 11.1.1 The k-out-of-M Problem 277
 11.1.2 Mutual Exclusion with Multiple Entries:
 The 1-out-of-M Mutex Problem 278
 11.1.3 An Algorithm for the k-out-of-M Mutex Problem 280
 11.1.4 Proof of the Algorithm 283
 11.1.5 From Mutex Algorithms to k-out-of-M Algorithms ... 285
 11.2 Several Resources with a Single Instance 285
 11.2.1 Several Resources with a Single Instance 286
 11.2.2 Incremental Requests for Single Instance Resources:
 Using a Total Order 287
 11.2.3 Incremental Requests for Single Instance Resources:
 Reducing Process Waiting Chains 290
 11.2.4 Simultaneous Requests for Single Instance Resources
 and Static Sessions 292
 11.2.5 Simultaneous Requests for Single Instance Resources
 and Dynamic Sessions 293
 11.3 Several Resources with Multiple Instances 295
 11.4 Summary ... 297
 11.5 Bibliographic Notes 298
 11.6 Exercises and Problems 299

Part IV High-Level Communication Abstractions

12 Order Constraints on Message Delivery 303
 12.1 The Causal Message Delivery Abstraction 303
 12.1.1 Definition of Causal Message Delivery 304
 12.1.2 A Causality-Based Characterization
 of Causal Message Delivery 305
 12.1.3 Causal Order
 with Respect to Other Message Ordering Constraints ... 306
 12.2 A Basic Algorithm for Point-to-Point Causal Message Delivery 306
 12.2.1 A Simple Algorithm 306
 12.2.2 Proof of the Algorithm 309
 12.2.3 Reduce the Size of Control Information
 Carried by Messages 310
 12.3 Causal Broadcast .. 313
 12.3.1 Definition and a Simple Algorithm 313
 12.3.2 The Notion of a Causal Barrier 315
 12.3.3 Causal Broadcast with Bounded Lifetime Messages ... 317
 12.4 The Total Order Broadcast Abstraction 320
 12.4.1 Strong Total Order Versus Weak Total Order 320
 12.4.2 An Algorithm Based on a Coordinator Process
 or a Circulating Token 322
12.3 An Inquiry-Based Algorithm .. 324
12.4 An Algorithm for Synchronous Systems 326
12.5 Playing with a Single Channel 328
 12.5.1 Four Order Properties on a Channel 328
 12.5.2 A General Algorithm Implementing These Properties 329
12.6 Summary .. 332
12.7 Bibliographic Notes .. 332
12.8 Exercises and Problems .. 333

13 Rendezvous (Synchronous) Communication 335
 13.1 The Synchronous Communication Abstraction 335
 13.1.1 Definition .. 335
 13.1.2 An Example of Use .. 337
 13.1.3 A Message Pattern-Based Characterization 338
 13.1.4 Types of Algorithms Implementing Synchronous Communications .. 341
 13.2 Algorithms for Nondeterministic Planned Interactions 341
 13.2.1 Deterministic and Nondeterministic Communication Contexts .. 341
 13.2.2 An Asymmetric (Static) Client–Server Implementation . 342
 13.2.3 An Asymmetric Token-Based Implementation 345
 13.3 An Algorithm for Nondeterministic Forced Interactions 350
 13.3.1 Nondeterministic Forced Interactions 350
 13.3.2 A Simple Algorithm .. 350
 13.3.3 Proof of the Algorithm 352
 13.4 Rendezvous with Deadlines in Synchronous Systems 354
 13.4.1 Synchronous Systems and Rendezvous with Deadline . 354
 13.4.2 Rendezvous with Deadline Between Two Processes 355
 13.4.3 Introducing Nondeterministic Choice 358
 13.4.4 \(n \)-Way Rendezvous with Deadline 360
 13.5 Summary ... 361
 13.6 Bibliographic Notes .. 361
 13.7 Exercises and Problems .. 362

Part V Detection of Properties on Distributed Executions

14 Distributed Termination Detection 367
 14.1 The Distributed Termination Detection Problem 367
 14.1.1 Process and Channel States 367
 14.1.2 Termination Predicate 368
 14.1.3 The Termination Detection Problem 369
 14.1.4 Types and Structure of Termination Detection Algorithms 369
 14.2 Termination Detection in the Asynchronous Atomic Model . 370
 14.2.1 The Atomic Model ... 370
14.2.2 The Four-Counter Algorithm 371
14.2.3 The Counting Vector Algorithm 373
14.2.4 The Four-Counter Algorithm vs. the Counting Vector Algorithm 376
14.3 Termination Detection in Diffusing Computations 376
 14.3.1 The Notion of a Diffusing Computation 376
 14.3.2 A Detection Algorithm Suited to Diffusing Computations 377
14.4 A General Termination Detection Algorithm 378
 14.4.1 Wave and Sequence of Waves 379
 14.4.2 A Reasoned Construction 381
14.5 Termination Detection in a Very General Distributed Model 385
 14.5.1 Model and Nondeterministic Atomic Receive Statement 385
 14.5.2 The Predicate fulfilled() 387
 14.5.3 Static vs. Dynamic Termination: Definition 388
 14.5.4 Detection of Static Termination 390
 14.5.5 Detection of Dynamic Termination 393
14.6 Summary ... 396
14.7 Bibliographic Notes .. 396
14.8 Exercises and Problems .. 397

15 Distributed Deadlock Detection .. 401
 15.1 The Deadlock Detection Problem .. 401
 15.1.1 Wait-For Graph (WFG) .. 401
 15.1.2 AND and OR Models Associated with Deadlock .. 403
 15.1.3 Deadlock in the AND Model .. 403
 15.1.4 Deadlock in the OR Model .. 404
 15.1.5 The Deadlock Detection Problem .. 404
 15.1.6 Structure of Deadlock Detection Algorithms .. 405
 15.2 Deadlock Detection in the One-at-a-Time Model .. 405
 15.2.1 Principle and Local Variables .. 406
 15.2.2 A Detection Algorithm .. 406
 15.2.3 Proof of the Algorithm .. 407
 15.3 Deadlock Detection in the AND Communication Model .. 408
 15.3.1 Model and Principle of the Algorithm .. 409
 15.3.2 A Detection Algorithm .. 409
 15.3.3 Proof of the Algorithm .. 411
 15.4 Deadlock Detection in the OR Communication Model .. 413
 15.4.1 Principle .. 413
 15.4.2 A Detection Algorithm .. 416
 15.4.3 Proof of the Algorithm .. 419
 15.5 Summary .. 421
 15.6 Bibliographic Notes .. 421
 15.7 Exercises and Problems .. 422
Part VI Distributed Shared Memory

16 Atomic Consistency (Linearizability) ... 427
 16.1 The Concept of a Distributed Shared Memory 427
 16.2 The Atomicity Consistency Condition 429
 16.2.1 What Is the Issue? .. 429
 16.2.2 An Execution Is a Partial Order on Operations 429
 16.2.3 Atomicity: Formal Definition 430
 16.3 Atomic Objects Compose for Free .. 432
 16.4 Message-Passing Implementations of Atomicity 435
 16.4.1 Atomicity Based on a Total Order Broadcast Abstraction 435
 16.4.2 Atomicity of Read/Write Objects Based on Server Processes ... 437
 16.4.3 Atomicity Based on a Server Process and Copy Invalidation ... 438
 16.4.4 Introducing the Notion of an Owner Process 439
 16.4.5 Atomicity Based on a Server Process and Copy Update 443
 16.5 Summary ... 444
 16.6 Bibliographic Notes .. 444
 16.7 Exercises and Problems ... 445

17 Sequential Consistency ... 447
 17.1 Sequential Consistency .. 447
 17.1.1 Definition ... 447
 17.1.2 Sequential Consistency Is Not a Local Property 449
 17.1.3 Partial Order for Sequential Consistency 450
 17.1.4 Two Theorems for Sequentially Consistent Read/Write Registers 451
 17.1.5 From Theorems to Algorithms 453
 17.2 Sequential Consistency from Total Order Broadcast 453
 17.2.1 A Fast Read Algorithm for Read/Write Objects 453
 17.2.2 A Fast Write Algorithm for Read/Write Objects 455
 17.2.3 A Fast Enqueue Algorithm for Queue Objects 456
 17.3 Sequential Consistency from a Single Server 456
 17.3.1 The Single Server Is a Process 456
 17.3.2 The Single Server Is a Navigating Token 459
 17.4 Sequential Consistency with a Server per Object 460
 17.4.1 Structural View ... 460
 17.4.2 The Object Managers Must Cooperate 461
 17.4.3 An Algorithm Based on the OO Constraint 462
 17.5 A Weaker Consistency Condition: Causal Consistency 464
 17.5.1 Definition ... 464
 17.5.2 A Simple Algorithm .. 466
 17.5.3 The Case of a Single Object 467
 17.6 A Hierarchy of Consistency Conditions 468
Distributed Algorithms for Message-Passing Systems
Raynal, M.
2013, XXXI, 500 p. 198 illus., 106 illus. in color., Hardcover
ISBN: 978-3-642-38122-5