Contents

1 Introduction ... 1
 1.1 Systems Analysis 2
 1.2 What is a System? 4
 1.3 What is a Model? 7
 1.4 The Formation of Models in Natural Science 9
 1.5 Questions and Problems 13

2 Mathematical Models: A First Look 15
 2.1 From System to Model 15
 2.2 Static Models 16
 2.3 Dynamic Models 23
 2.4 Discrete Time Models 26
 2.5 Spatially Continuous Models 27
 2.6 Stochastic Models 27
 2.7 Questions and Problems 31

3 Static Models ... 33
 3.1 Equilibrium Distribution Between Water and Air 34
 3.2 Equilibrium Distribution Between Water and Sediment ... 35
 3.3 Multi-dimensional Static Models 37
 3.4 Questions and Problems 39

4 Linear Models with One Variable 43
 4.1 The Linear One-Box Model as a Balance Equation 44
 4.2 Linear Models with Constant Coefficients 47
 4.3 Time-Dependent Coefficients 59
 4.4 Questions and Problems 75

5 Linear Models with Several Variables 81
 5.1 Linear Models with Two System Variables 81
 5.2 Linear Models with Several System Variables 113
 5.3 Questions and Problems 120
6 Nonlinear Models 125
 6.1 Nonlinear Models with One System Variable 126
 6.2 Nonlinear Box Models with Several System Variables .. 143
 6.3 Questions and Problems 160

7 Time-Discrete Models 165
 7.1 Time-Discrete Models with One Variable 165
 7.2 Time-Discrete Models with Several Variables 180
 7.3 Questions and Problems 186

8 Models in Time and Space 189
 8.1 Mixing and Transformation 189
 8.2 Advection, Diffusion and Exchange 192
 8.3 Steady-State Transport/Transformation Models 202
 8.4 Time-Dependent Solutions of the Transport/
 Transformation Equation 213
 8.5 Questions and Problems 221

A List of Symbols 227

B Dimensions and Units 231
 B.1 Dimensions .. 231
 B.2 Units .. 232

C Formulary 233
 C.1 Linear Inhomogeneous First-Order Differential
 Equation ... 233
 C.2 System of Two Linear First-Order Differential
 Equations .. 234
 C.3 General Solution of the Linear Second-Order
 Differential Equation with Constant Coefficients 235
 C.4 Solution of Linear Differential Equations
 with Imaginary Eigenvalues 237

D Eigenvalues 239
 D.1 The n-Dimensional System 239
 D.2 Explicit Solution for the Two-Dimensional System 240

E Time-Dependent Diffusion Equation 243
 E.1 The Normal or Gaussian Distribution 243
 E.2 The Error Function 244
 E.3 The Principle of Linear Superposition 244

Bibliography 247

Index 249
Introduction to Systems Analysis
Mathematically Modeling Natural Systems
Imboden, D.M.; Pfenninger, S.
2013, VIII, 252 p., Hardcover
ISBN: 978-3-642-30638-9