Contents

Part I Principles of communication protocols 3

1 Services 5
 1.1 Principles 5
 1.2 Description 12
 1.3 Example 22

2 Protocols 29
 2.1 Principles 29
 2.2 Description 33
 2.3 Example 43

3 Layers 53
 3.1 Principles 53
 3.2 Description 57
 3.3 Example 60

4 Layered architectures 65
 4.1 Principles 65
 4.2 Description 67
 4.3 Examples 68

5 Protocol functions 77
 5.1 Error control 77
 5.2 Synchronization 83
 5.3 Connection management 85
 5.4 Soft states 93
 5.5 PDU coding/decoding 94
 5.6 Adjustments of PDU size 95
 5.7 Use of sequence numbers 96
 5.8 Flow control 98

6 Case study: The Internet protocol stack 107
 6.1 IP layer 107
 6.2 Transport layer 114
 6.3 Applications and high-level protocols 126
Part II Description of communication protocols

7 Formal description methods
- 7.1 Service and protocol specifications
- 7.2 Need for formal descriptions
- 7.3 Classification of formal description methods
- 7.4 Finite state machines
- 7.5 Extended finite state machines
- 7.6 Petri nets
- 7.7 Process calculi
- 7.8 Temporal logics
- 7.9 Hybrid methods

8 Formal description techniques
- 8.1 EFSM-based description – Example: SDL
- 8.2 Communication-oriented description – Example: MSC
- 8.3 Algebraic-based description – Example: LOTOS
- 8.4 Descriptive specification – Example: cTLA
- 8.5 Data format description – Example: ASN.1
- 8.6 Protocol description with UML 2

Part III Development of communication protocols

9 Protocol development process
- 9.1 Development phases
- 9.2 Singularities of protocol development

10 Design
- 10.1 Systematic protocol design
- 10.2 Specification development

11 Verification
- 11.1 About protocol verification
- 11.2 Verification techniques
- 11.3 Reachability analysis
- 11.4 Petri net analysis
- 11.5 Algebraic verification
- 11.6 Deductive verification
- 11.7 Model checking
Protocol Engineering
Kö nig, H.
2012, XVI, 528 p., Hardcover
ISBN: 978-3-642-29144-9