Contents

1 Energy Demand and Supply ... 1
 1.1 Forms and Units of Work, Heat and Energy 2
 1.1.1 Units of Energy 3
 1.2 Energy Demand and Supply. 6
 1.2.1 Energy Demand 7
 1.2.2 Energy Supply 13
 1.2.3 Energy Prices, OPEC and Politics 17
 1.3 Reserves, Resources and Future Demand for Energy 21
 1.3.1 Energy Reserves and Resources 23
 1.3.2 The Finite Life of a Resource 25
 1.3.3 The Hubbert Curve and the Hubbert Peak 26
 1.4 Concluding Remarks... 30
References .. 32

2 Environmental and Ecological Effects of Energy Production
and Consumption ... 33
 2.1 Environment, Ecology and Ecosystems 34
 2.2 Global Climate Change 35
 2.2.1 The Energy Balance of the Earth 36
 2.2.2 The Greenhouse Effect 38
 2.2.3 Major Consequences of the Greenhouse Effect ... 40
 2.2.4 Remedial Actions for Global Warming 42
 2.2.5 The Failure of the Copenhagen Summit 45
 2.3 Acid Rain .. 47
 2.4 Lead Abatement .. 51
 2.5 Thermal Pollution and Fresh-Water Use 53
 2.6 Nuclear Waste ... 55
 2.6.1 Initial Treatment of the Waste 57
 2.6.2 Long-Term Disposal 58
3 Fundamentals of Energy Conversion

3.1 Origins of Thermodynamics and Historical Context

3.2 Fundamental Concepts of Thermodynamics

3.3 Work, Heat and Energy

3.3.1 Work

3.3.2 Heat

3.3.3 Sign Convention

3.4 The First Law of Thermodynamics: Energy Balance

3.4.1 Closed Systems

3.4.2 Cyclic Systems

3.4.3 Open Systems

3.5 The Second Law of Thermodynamics

3.5.1 Implications of the Second Law on Energy Conversion Systems and Processes

3.6 Thermal Power Plants

3.6.1 Vapor Power Cycles: The Rankine Cycle

3.6.2 Gas Cycles: The Brayton Cycle

3.6.3 Refrigeration and Heat Pump Cycles

3.7 Exergy: Availability

3.7.1 Geothermal Energy Resources

3.7.2 Fossil-Fuel Resources

3.7.3 Radiation: The Sun as Energy Resource

3.7.4 Second Law Efficiency: Utilization Factor

References

4 Introduction to Nuclear Energy

4.1 Elements of Atomic and Nuclear Physics

4.1.1 Atoms and Nuclei: Basic Definitions

4.1.2 Atomic Mass, Mass Defect and Binding Energy

4.1.3 Nuclear Reactions and Energy Released

4.1.4 Radioactivity

4.1.5 Rate of Radioactive Decay: Half Life

4.2 Nuclear Fission

4.2.1 Interactions of Neutrons with Nuclei

4.2.2 Cross Sections of Common Nuclei

4.2.3 Neutron Energies: Thermal Neutrons

4.2.4 The Chain Reaction: Probability of Fission

4.2.5 The Moderation Process and Common Moderators

4.2.6 Fission Products and Energy Released in Chain Reactions

4.3 Conversion and Breeding Reactions
5 Nuclear Power Plants .. 131
 5.1 Basic Components of a Thermal Nuclear Power Plant 131
 5.1.1 The Reactor Fuel .. 132
 5.1.2 The Fuel Moderator 134
 5.1.3 The Reactor Coolant 136
 5.1.4 The Control Systems 136
 5.1.5 The Shield .. 138
 5.2 Nuclear Reactor Types and Power Plants 139
 5.2.1 The Pressurized Water Reactor (PWR) 140
 5.2.2 Boiling Water Reactor (BWR) 143
 5.2.3 The CANDU Reactor 144
 5.2.4 The Gas Cooled Reactors (GCR) 145
 5.2.5 Other Reactors 147
 5.3 Cooling of Nuclear Reactors 148
 5.3.1 Accidents in Nuclear Power Plants: Three-Mile Island, Chernobyl and Fukushima Dai-ichi 149
 5.3.2 The Accident at the Three-Mile Island 149
 5.3.3 The Accident at Chernobyl 152
 5.3.4 The Accident at Fukushima Dai-ichi 157
 5.4 Environmental, Safety and Societal Issues for Thermal Nuclear Reactors 158
 5.5 Breeder Reactors ... 161
 5.5.1 Fast Breeder Power Plants 164
 5.6 The Future of Nuclear Energy: To Breed or Not to Breed? 165
 References ... 172

6 Fusion Energy .. 173
 6.1 The Energy of the Stars 173
 6.2 Man-Made Fusion ... 176
 6.2.1 The Paths to Form Helium-4 177
 6.2.2 The Deuterium–Tritium (DT) Fusion Reaction 178
 6.2.3 Magnetic and Inertial Confinement of Plasma 181
 6.3 A Fusion Electric Power Plant 186
 6.4 Environmental Considerations 188
 6.5 “Cold Fusion,” Other Myths and Scientific Ethics 189
 6.5.1 Muon Atomic Fusion 189
 6.5.2 Sonoluminescence 189
 6.5.3 Cold Fusion in a Test-Tube 190
 6.5.4 Ethical Lessons from the “Cold Fusion” Debacle 192
 References ... 194
9.2.2 Single-Flashing Units 265
9.2.3 Dual Flashing Units 267
9.2.4 Several Flashing Processes: A Useful Theoretical
 Exercise .. 268
9.2.5 Binary Units 271
9.2.6 Hybrid Geothermal-Fossil Power Units 273
9.3 Effects of Impurities in the Geothermal Fluid 274
9.4 Cooling Systems 279
9.5 Geothermal District Heating: An Example of Exergy Savings
 and Environmental Benefit 280
9.6 Environmental Effects 282
Reference .. 285

10 Biomass .. 287
10.1 Biomass ... 288
 10.1.1 Biomass Production, World Potential 291
 10.1.2 Methods of Biomass Utilization 293
 10.1.3 Aquatic Biomass 295
10.2 Biofuels ... 296
 10.2.1 Ethanol Production from Corn 298
10.3 Environmental Effects 302
 10.3.1 Land Use 302
 10.3.2 Fresh Water Requirements 303
 10.3.3 Use of Fertilizers and Pesticides 304
 10.3.4 Unintended Production of Methane 305
 10.3.5 Other Effects 305
10.4 Social, Economic and Other Issues for Biomass Utilization... 306
10.5 The Future of Biomass for Energy Production 309
Reference .. 311

11 Power from the Water 313
11.1 Hydroelectric Power 314
 11.1.1 Global Hydroelectric Energy Production 315
 11.1.2 Planned Hydroelectric Installations and Future
 Expansion 318
 11.1.3 Environmental Impacts and Safety Concerns 319
11.2 Tidal Power 320
 11.2.1 Systems for Tidal Power Utilization 322
 11.2.2 Environmental Effects of Tidal Systems 326
11.3 Ocean Currents 327
11.4 Wave Power 328
 11.4.1 Wave Mechanics and Wave Power 328
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.2</td>
<td>Systems for Wave Power Utilization</td>
<td>330</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Environmental Effects of Wave Power and Other Considerations</td>
<td>332</td>
</tr>
<tr>
<td>11.5</td>
<td>Ocean Thermal Energy Conversion (OTEC)</td>
<td>333</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Two Systems for OTEC</td>
<td>334</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Environmental Effects of OTEC and Other Considerations</td>
<td>336</td>
</tr>
<tr>
<td>11.6</td>
<td>Types of Water Power Turbines</td>
<td>336</td>
</tr>
<tr>
<td>11.7</td>
<td>Concluding Remarks on Water Power</td>
<td>339</td>
</tr>
<tr>
<td>12</td>
<td>Energy Storage</td>
<td>343</td>
</tr>
<tr>
<td>12.1</td>
<td>The Demand for Electricity: The Need to Store Energy</td>
<td>344</td>
</tr>
<tr>
<td>12.2</td>
<td>Electromechanical Storage</td>
<td>349</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Pumped Water</td>
<td>349</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Compressed Air</td>
<td>351</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Springs, Torsion Bars and Flywheels</td>
<td>353</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Capacitors, Ultra capacitors, and Superconducting Coils</td>
<td>355</td>
</tr>
<tr>
<td>12.3</td>
<td>Thermal Storage</td>
<td>358</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Sensible and Latent Heat Storage</td>
<td>358</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Heat Losses in Thermal Storage Systems</td>
<td>360</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Storage of “Coolness” to Offset the Peak Power Demand</td>
<td>361</td>
</tr>
<tr>
<td>12.4</td>
<td>Chemical Storage: Batteries</td>
<td>363</td>
</tr>
<tr>
<td>12.4.1</td>
<td>The Electrochemical Cell</td>
<td>363</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Commonly Used Battery Types</td>
<td>366</td>
</tr>
<tr>
<td>12.5</td>
<td>Hydrogen Storage: The Hydrogen Economy</td>
<td>369</td>
</tr>
<tr>
<td>12.6</td>
<td>Fuel Cells</td>
<td>372</td>
</tr>
<tr>
<td>12.6.1</td>
<td>High-Temperature Fuel Cells</td>
<td>374</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Thermodynamic Losses and Fuel Cell Efficiency</td>
<td>375</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>13</td>
<td>Energy Conservation and Efficiency</td>
<td>383</td>
</tr>
<tr>
<td>13.1</td>
<td>Societal Tasks, Energy Consumption, Conservation and Higher Efficiency</td>
<td>384</td>
</tr>
<tr>
<td>13.2</td>
<td>The Use of the Exergy Concept to Reduce Energy Resource Consumption</td>
<td>387</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Utilization of Fossil Fuel Resources</td>
<td>387</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Minimization of Energy or Power Used for a Task</td>
<td>389</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Combination of Tasks: Cogeneration</td>
<td>393</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Waste Heat Utilization</td>
<td>394</td>
</tr>
<tr>
<td>13.3</td>
<td>Conservation and Efficiency Measures in Buildings</td>
<td>396</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Use of Fluorescent Bulbs or Light Emitting Diodes</td>
<td>397</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Use of Heat Pump Cycles for Heating and Cooling</td>
<td>399</td>
</tr>
</tbody>
</table>
13.3.3 Geothermal Heat Pumps 401
13.3.4 Adiabatic Evaporation 404
13.3.5 District Cooling ... 405
13.3.6 Other Energy Conservation Measures
 for Buildings ... 406
13.4 Conservation and Improved Efficiency in Transportation 409
13.4.1 Electric Cars ... 411
13.4.2 Fuel Cell Powered Vehicles 413
Reference .. 417

14 Economics of Energy Projects 419
14.1 Introduction .. 420
 14.1.1 Fundamental Concepts and Definitions 420
14.2 The Decision Making Process 421
 14.2.1 Developing a List of Alternatives 422
14.3 The Time-Value of Money 424
 14.3.1 Simple and Compound Interest 425
 14.3.2 Cash Flow, Equivalence and Present Value 426
 14.3.3 Cash Flow Calculations 428
 14.3.4 A Note on the Discount Rate and Interest Rates ... 429
14.4 Investment Appraisal Methods 431
 14.4.1 The Net Present Value (NPV) 431
 14.4.2 Average Return on Book (ARB) 432
 14.4.3 The Pay-Back Period (PBP) 433
 14.4.4 Internal Rate of Return (IRR) 434
 14.4.5 Profitability Index (PI) 435
14.5 Use of the NPV Method for Electricity Generation
 Projects .. 436
 14.5.1 NPV and Governmental Incentives or
 Disincentives .. 440
 14.5.2 Use of the NPV Method for Improved Efficiency
 Projects .. 446
14.6 Project Financing for Alternative Energy Technology 451

Index .. 455
Alternative Energy Sources
Michaelides, E.E.S.
2012, XVIII, 462 p., Hardcover
ISBN: 978-3-642-20950-5