## Contents

1 Introduction ............................................................... 1  
Further Reading ............................................................ 2  

2 Postulates of Thermodynamics ............................................. 3  
2.1 Thermodynamic Systems: Postulate 1 ................................. 4  
   2.1.1 Constrained Systems and the Measurability  
        of Energy via Mechanical Work ............................... 6  
2.2 The Conditions of Equilibrium: Postulates 2, 3 and 4 ............... 8  
   2.2.1 Properties of the Entropy Function ............................. 10  
   2.2.2 Properties of the Differential Fundamental Equation .......... 13  
   2.2.3 The Scale of Entropy and Temperature ......................... 15  
   2.2.4 Euler Relation, Gibbs–Duhem Equation  
        and Equations of State ........................................... 17  
   2.2.5 The Fundamental Equation of an Ideal Gas .................... 18  
   2.2.6 The Fundamental Equation of an Ideal  
        van der Waals Fluid ........................................... 22  
Further Reading ............................................................ 28  

3 Thermodynamic Equilibrium in Isolated and Isentropic Systems .... 29  
3.1 Thermal Equilibrium .................................................... 32  
3.2 Thermal and Mechanical Equilibrium .................................. 36  
3.3 Thermal and Chemical Equilibrium ................................. 37  
Further Reading ............................................................ 41  

4 Thermodynamic Equilibrium in Systems with Other Constraints .... 43  
4.1 Equilibrium in Constant Pressure Systems:  
        The Enthalpy Function ........................................... 44  
4.2 Equilibrium in Constant Temperature and Constant  
4.3 Equilibrium in Constant Temperature and Constant Pressure Systems: The Gibbs Potential ......................... 48
4.4 Summary of the Equilibrium Conditions: Properties of the Energy-like Potential Functions ..................... 50
   4.4.1 Calculation of Heat and Work from Thermodynamic Potential Functions ............................................. 52
   4.4.2 Calculation of Entropy and Energy-like Functions from Measurable Quantities ................................ 53
   4.4.3 Calculation of Thermodynamic Quantities from the Fundamental Equation ....................................... 57
4.5 Equations of State of Real Gases, Fluids and Solids .......... 58
   4.5.1 Chemical Potential and Fugacity of a Real Gas .......... 64
Further Reading .......................................................... 68

5 Thermodynamic Processes and Engines ............................. 69
   5.1 Quasistatic, Reversible and Irreversible Processes ........... 69
   5.2 Heat Engines: The Carnot Cycle and the Carnot Engine ....... 72
   5.3 Refrigerators and Heat Pumps: The Carnot Refrigerating
       and Heat-Pump Cycle ........................................... 75
   5.4 Heat Engines and Refrigerators Used in Practice .......... 77
       5.4.1 Heat Engines Based on the Rankine Cycle ............. 77
       5.4.2 Refrigerators and Heat Pumps Based
           on the Rankine Cycle ....................................... 79
       5.4.3 Isenthalpic Processes: The Joule–Thompson Effect .... 80
Further Reading .......................................................... 85

6 Thermodynamics of Mixtures (Multicomponent Systems) ........ 87
   6.1 Partial Molar Quantities ........................................ 87
       6.1.1 Chemical Potential as a Partial Molar Quantity ....... 89
       6.1.2 Determination of Partial Molar Quantities
           from Experimental Data ................................... 90
       6.2 Thermodynamics of Ideal Mixtures ......................... 93
           6.2.1 Ideal Gas Mixtures .................................... 93
           6.2.2 Properties of Ideal Mixtures ......................... 95
           6.2.3 Alternative Reference States ......................... 98
           6.2.4 Activity and Standard State ......................... 101
   6.3 Thermodynamics of Real Mixtures ............................. 103
       6.3.1 Mixtures of Real Gases ................................ 103
       6.3.2 The Chemical Potential in Terms of Mole Fractions .... 106
       6.3.3 The Chemical Potential in Terms of Solute Concentration .... 108
       6.3.4 Activity and Standard State: An Overview ............. 109
       6.3.5 Thermodynamic Properties of a Real Mixture .......... 115
   6.4 Ideal Solutions and Ideal Dilute Solutions .................. 118
Further Reading .......................................................... 122
9.2 Thermodynamic Description of Systems Containing Electrically Charged Particles ...................................... 241
9.2.1 Thermodynamic Consequences of the Electroneutrality Principle: The Chemical Potential of Electrolytes and the Mean Activity Coefficient ............................... 244
9.2.2 Chemical Potential of Ions in an Electric Field: The Electrochemical Potential .............................................. 251
9.2.3 Heterogeneous Electrochemical Equilibria: The Galvanic Cell .......................................................... 253
9.2.4 Electrodes and Electrode Potentials .......................... 259
Further Reading ........................................................................ 264

10 Elements of Equilibrium Statistical Thermodynamics ................. 265
10.1 The Microcanonical Ensemble ........................................ 266
  10.1.1 Statistical Thermodynamics of the Einstein Solid in Microcanonical Representation ........................................... 269
  10.1.2 Statistical Thermodynamics of a System of Two-State Molecules in Microcanonical Representation ........................................ 272
10.2 The Canonical Ensemble .................................................. 274
  10.2.1 Calculation of the Canonical Partition Function from Molecular Data ........................................... 280
  10.2.2 Statistical Thermodynamics of the Einstein Solid and the System of Two-State Molecules in Canonical Representation ........................................ 281
  10.2.3 The Translational Partition Function. Statistical Thermodynamics of a Monatomic Ideal Gas ........................................ 283
  10.2.4 Calculation of the Rotational, Vibrational, and Electronic Partition Functions ........................................... 287
  10.2.5 Statistical Characterization of the Canonical Energy ...... 291
  10.2.6 The Equipartition Theorem ........................................ 294
10.3 General Statistical Definition and Interpretation of Entropy ...... 297
10.4 Calculation of the Chemical Equilibrium Constant from Canonical Partition Functions ........................................ 300
Further Reading ........................................................................ 306

11 Toward Equilibrium: Elements of Transport Phenomena ............ 307
11.1 Transport Equations for Heat, Electricity, and Momentum ...... 309
11.2 Equations for the Diffusive Material Transport ...................... 311
  11.2.1 Fick’s First Law: The Flux of Diffusion ...................... 312
  11.2.2 Fick’s Second Law: The Rate of Change of the Concentration Profile ........................................... 312
11.3 Principle Transport Processes and Coupled Processes ............ 316
Further Reading ........................................................................ 318
Appendix ........................................................................ 319
  A1 Useful Relations of Multivariate Calculus .................... 319
    A.1.1 Differentiation of Multivariate Functions ............... 319
    A.1.2 Differentiation of Composite Functions ............... 322
    A.1.3 Differentiation of Implicit Functions ................. 323
    A.1.4 Integration of Multivariate Functions ............... 324
    A.1.5 The Euler Equation for Homogeneous
    First-Order Functions ........................................ 325
  A2 Changing Extensive Variables to Intensive Ones:
    Legendre Transformation ....................................... 326
    A.2.1 Legendre Transformations ................................ 327
    A.2.2 Legendre Transformation of the Entropy Function .. 329
  A3 Classical Thermodynamics: The Laws ......................... 331
    A.3.1 Zeroth Law and Temperature ........................... 332
    A.3.2 First Law and Energy .................................... 334
    A.3.3 Second Law and Entropy ............................... 336
    A.3.4 Third Law and the Uniqueness of the Entropy Scale ... 341
  Further Reading .......................................................... 341

Index .............................................................................. 343
Chemical Thermodynamics
An Introduction
Keszei, E.
2012, XI, 354 p. 77 illus., 6 illus. in color., Softcover
ISBN: 978-3-642-19863-2