Contents

1 Introduction ... 1
Further Reading ... 2

2 Postulates of Thermodynamics .. 3
2.1 Thermodynamic Systems: Postulate 1 4
 2.1.1 Constrained Systems and the Measurability of Energy via Mechanical Work ... 6
2.2 The Conditions of Equilibrium: Postulates 2, 3 and 4 8
 2.2.1 Properties of the Entropy Function 10
 2.2.2 Properties of the Differential Fundamental Equation 13
 2.2.3 The Scale of Entropy and Temperature 15
 2.2.4 Euler Relation, Gibbs–Duhem Equation and Equations of State .. 17
 2.2.5 The Fundamental Equation of an Ideal Gas 18
 2.2.6 The Fundamental Equation of an Ideal van der Waals Fluid ... 22
Further Reading ... 28

3 Thermodynamic Equilibrium in Isolated and Isentropic Systems 29
3.1 Thermal Equilibrium .. 32
3.2 Thermal and Mechanical Equilibrium 36
3.3 Thermal and Chemical Equilibrium 37
Further Reading ... 41

4 Thermodynamic Equilibrium in Systems with Other Constraints 43
4.1 Equilibrium in Constant Pressure Systems: The Enthalpy Function ... 44
4.2 Equilibrium in Constant Temperature and Constant Volume Systems: The Free Energy Function 46
Phase Equilibria

7 Phase Equilibria .. 125

7.1 Stability of Phases .. 127

7.2 Phase Equilibria of Pure Substances 129

7.2.1 Phase Diagrams of Pure Substances 135

7.2.2 Calculation of the Quantity of Coexisting phases:
 the Lever Rule .. 139

7.2.3 Calculation of Equilibrium Temperature and Pressure;
 the Clausius–Clapeyron Equation 141

7.2.4 First-Order and Second-Order Phase Transitions 144

7.3 Liquid–Vapor Equilibrium of Ideal Binary Mixtures 147

7.4 Liquid–Vapor Equilibrium of Real Binary Mixtures 154

7.5 Solid–Liquid Equilibrium of Ideal Binary Mixtures 158

7.6 Equilibrium of Partially Miscible Binary Mixtures 159

7.6.1 Liquid–Liquid Phase Diagrams 161

7.6.2 Solid–Liquid Phase Diagrams 163

7.6.3 Colligative Properties: Equilibrium of a Binary Mixture
 Phase and a Pure Phase Containing One of the Mixture
 Components .. 178

7.7 Phase Diagrams of Multicomponent Systems 185

7.8 Separation of Components Based on Different Phase Diagrams ... 190

Further Reading ... 200

Equilibria of Chemical Reactions

8 Equilibria of Chemical Reactions 201

8.1 Condition of a Chemical Equilibrium at Constant Temperature
 and Pressure .. 202

8.1.1 Relation of the Equilibrium Constant and the
 Stoichiometric Equation .. 205

8.1.2 Affinity: The Driving Force of Chemical Reactions 206

8.2 The Equilibrium Constant in Terms of Different Activities 211

8.2.1 Heterogeneous Reaction Equilibria
 of Immiscible Components ... 214

8.3 Calculation of the Equilibrium Constant from
 Thermodynamic Data .. 218

8.4 Temperature and Pressure Dependence of the Equilibrium
 Constant .. 221

8.4.1 The Le Châtelier–Braun Principle 223

Further Reading ... 226

Extension of Thermodynamics for Additional Interactions

9 Extension of Thermodynamics for Additional Interactions
 (Non-Simple Systems) ... 227

9.1 Thermodynamics of Interfaces: Two-Dimensional
 Equations of State ... 231

9.1.1 Thermodynamic Properties of Curved Surfaces 234
9.2 Thermodynamic Description of Systems Containing Electrically Charged Particles 241
 9.2.1 Thermodynamic Consequences of the Electroneutrality Principle: The Chemical Potential of Electrolytes and the Mean Activity Coefficient 244
 9.2.2 Chemical Potential of Ions in an Electric Field: The Electrochemical Potential 251
 9.2.3 Heterogeneous Electrochemical Equilibria: The Galvanic Cell ... 253
 9.2.4 Electrodes and Electrode Potentials 259
Further Reading .. 264

10 Elements of Equilibrium Statistical Thermodynamics 265
 10.1 The Microcanonical Ensemble .. 266
 10.1.1 Statistical Thermodynamics of the Einstein Solid in Microcanonical Representation 269
 10.1.2 Statistical Thermodynamics of a System of Two-State Molecules in Microcanonical Representation ... 272
 10.2 The Canonical Ensemble ... 274
 10.2.1 Calculation of the Canonical Partition Function from Molecular Data ... 280
 10.2.2 Statistical Thermodynamics of the Einstein Solid and the System of Two-State Molecules in Canonical Representation ... 281
 10.2.3 The Translational Partition Function. Statistical Thermodynamics of a Monatomic Ideal Gas 283
 10.2.4 Calculation of the Rotational, Vibrational, and Electronic Partition Functions 287
 10.2.5 Statistical Characterization of the Canonical Energy 291
 10.2.6 The Equipartition Theorem .. 294
 10.3 General Statistical Definition and Interpretation of Entropy .. 297
 10.4 Calculation of the Chemical Equilibrium Constant from Canonical Partition Functions 300
Further Reading .. 306

11 Toward Equilibrium: Elements of Transport Phenomena 307
 11.1 Transport Equations for Heat, Electricity, and Momentum 309
 11.2 Equations for the Diffusive Material Transport 311
 11.2.1 Fick’s First Law: The Flux of Diffusion 312
 11.2.2 Fick’s Second Law: The Rate of Change of the Concentration Profile ... 312
 11.3 Principle Transport Processes and Coupled Processes ... 316
Further Reading .. 318
Appendix

A1 Useful Relations of Multivariate Calculus

A.1.1 Differentiation of Multivariate Functions
A.1.2 Differentiation of Composite Functions
A.1.3 Differentiation of Implicit Functions
A.1.4 Integration of Multivariate Functions
A.1.5 The Euler Equation for Homogeneous First-Order Functions

A2 Changing Extensive Variables to Intensive Ones:
Legendre Transformation
A.2.1 Legendre Transformations
A.2.2 Legendre Transformation of the Entropy Function

A3 Classical Thermodynamics: The Laws
A.3.1 Zeroth Law and Temperature
A.3.2 First Law and Energy
A.3.3 Second Law and Entropy
A.3.4 Third Law and the Uniqueness of the Entropy Scale

Further Reading

Index
Chemical Thermodynamics
An Introduction
Keszei, E.
2012, XI, 354 p. 77 illus., 6 illus. in color., Softcover
ISBN: 978-3-642-19863-2